SU(3) Analysis of D-Meson Decays

Patipan Uttayarat

Phenomenology Symposium, Pittsburgh May 7, 2012

Based on:

D. Pirtskhalava and P. U., arXiv:1112.5451 [hep-ph].

D. Pirtskhalava and P. U., In Progress

The Measurements

Recently LHCb and CDF reported the measurement of $\Delta A_{CP} \equiv A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-)$:

- Uncertainties cancel in the difference.
- The world average value is more than 4σ away from 0.

The Measurements

Recently LHCb and CDF reported the measurement of $\Delta A_{CP} \equiv A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-)$:

- Uncertainties cancel in the difference.
- The world average value is more than 4σ away from 0.

The Measurements

Recently LHCb and CDF reported the measurement of $\Delta A_{CP} \equiv A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-)$:

$$\begin{array}{l} \Delta A_{CP} \\ \text{LHCb} & -(0.82 \pm 0.24)\% \\ \text{CDF} & -(0.62 \pm 0.23)\% \\ \text{W.A.} & -(0.67 \pm 0.16)\% \end{array}$$

- Uncertainties cancel in the difference.
- The world average value is more than 4σ away from 0.

Direct CP Violation Primer

Direct CP violation in decay

$$A_{CP}(D
ightarrow f) = rac{\Gamma(D
ightarrow f) - \Gamma(ar{D}
ightarrow ar{f})}{\Gamma(D
ightarrow f) + \Gamma(ar{D}
ightarrow ar{f})}.$$

Typical decay amplitude

$$egin{aligned} \mathcal{A}(D o f) &= \widetilde{a} \Sigma + \widetilde{b} \Delta, \ \mathcal{A}_{CP}(D o f) &pprox -2 \ \mathrm{Im} \left(rac{\widetilde{b}}{\widetilde{a}}
ight) \ \mathrm{Im} \left(rac{\Delta}{\Sigma}
ight). \end{aligned}$$

Why Should We Care?

- Significant CP violation in D^0 meson decay.
- It is commonly believed that Standard Model predicts a small ΔA_{CP} .
- It's tempting to attribute ΔA_{CP} to new physics
 1111.3987, 1202.2866, 1202.5038, ...
- However, we don't have a solid SM prediction for ΔA_{CP} . Need a better SM calculation.
 - ▶ 1111.5000, <u>1112.5451</u>, 1201.2351, 1201.0785, ...
 - ► Use flavor SU(3) to gain information about D-meson decays.

Why Should We Care?

- Significant CP violation in D^0 meson decay.
- It is commonly believed that Standard Model predicts a small ΔA_{CP} .
- It's tempting to attribute ΔA_{CP} to new physics
 1111.3987, 1202.2866, 1202.5038, ...
- However, we don't have a solid SM prediction for ΔA_{CP} . Need a better SM calculation.
 - ▶ 1111.5000, <u>1112.5451</u>, 1201.2351, 1201.0785, ...
 - ► Use flavor SU(3) to gain information about D-meson decays.

Flavor SU(3) Analysis

• Light quarks (u, d, s) form a triplet of SU(3).

- Light mesons (pions, kaons, etas) transform as $1 \oplus 8$.
- ▶ D-meson $(\bar{c}q)$, $q \in (u, d, s)$ transforms as a 3.
- Effective H_W ($c\bar{q}q\bar{q}$) transforms as $\overline{3} \oplus 6 \oplus \overline{15}$.
- Identify all possible SU(3) invariant matrix elements, $\langle out | H_{eff} | in \rangle$ (7 in SU(3) limit).
- Flavor *SU*(3) relates invaraint matrix elements in different decay amplitudes.
- Introduce SU(3) breaking effect by $m\lambda_8$
 - Generate (too) many new invariant matrix elements.
 - Require some working assumption to make progress.

Flavor SU(3) Analysis

• Light quarks (u, d, s) form a triplet of SU(3).

- Light mesons (pions, kaons, etas) transform as $1 \oplus 8$.
- ▶ D-meson $(\bar{c}q)$, $q \in (u, d, s)$ transforms as a 3.
- Effective H_W $(c\bar{q}q\bar{q})$ transforms as $\overline{3} \oplus 6 \oplus \overline{15}$.
- Identify all possible SU(3) invariant matrix elements, $\langle out | H_{eff} | in \rangle$ (7 in SU(3) limit).
- Flavor *SU*(3) relates invaraint matrix elements in different decay amplitudes.
- Introduce SU(3) breaking effect by $m\lambda_8$
 - Generate (too) many new invariant matrix elements.
 - Require some working assumption to make progress.

The Ansatz

- Assume matrix elements associated with the small rep. of H_{eff} are enhanced by $\sim O(10-50)$.
 - Only need to retain matrix elements associate with small rep of SU(3) breaking H_{eff}.
- This can be justified by:
 - The $\Delta I = 1/2$ rule in kaon system.
 - Practicality.
- Extract infomation about these matrix elements from the measured rates and CP asymmetries.
 - This is equivalent to working to first order in electroweak and all orders in QCD.

Analysis on Subset of Processes

$$\begin{split} \mathcal{A}(D^{0} \to K^{-}\pi^{+}) &= aV_{11}V_{22}^{*}, \\ \mathcal{A}(D^{0} \to \bar{K}^{0}\pi^{0}) &= \frac{-a+5T}{\sqrt{2}}V_{11}V_{22}^{*}, \\ \mathcal{A}(D^{0} \to K^{+}\pi^{-}) &= aV_{12}V_{21}^{*}, \\ \mathcal{A}(D^{0} \to K^{+}K^{-}) &= (a+c)\Sigma + b\Delta, \\ \mathcal{A}(D^{0} \to \pi^{+}\pi^{-}) &= (-a+c)\Sigma + b\Delta, \\ \mathcal{A}(D^{0} \to \pi^{0}\pi^{0}) &= \frac{-a+5T+c}{\sqrt{2}}\Sigma + \frac{b-5T}{\sqrt{2}}\Delta, \\ \mathcal{A}(D^{+} \to \bar{K}^{0}\pi^{+}) &= 5TV_{11}V_{22}^{*}, \\ \mathcal{A}(D^{+} \to \pi^{+}\pi^{0}) &= \frac{5T}{\sqrt{2}}\Sigma - \frac{5T}{\sqrt{2}}\Delta, \end{split}$$

Decay rates depend on a, c, T.

Patipan Uttayarat (UCSD)

Results

- Fitting to the measured BRs and ΔA_{CP} determines *a*, *c* and *T*.
- The ansatz provide reasonable parameter space for explaining ΔA_{CP} .

Predictions

• Individual asymmetries can be computed.

• $A_{CP}(D^0 \rightarrow K^-\pi^+, D^0 \rightarrow K^+\pi^-, D^+ \rightarrow \pi^+\pi^0) = 0$ in this framework.

Global Fit (work in progress)

- Determine all the relevant matrix elements.
- Include the effect of $\eta \eta'$ mixing.
 - Allow for the determination θ_{η} .
- Two possibilities
 - Retain only the SU(3) breaking triplets matrix elements.
 - Retain both the triplets and sextets.

Preliminary results

- Triplets
 - 22 real parameters.
 - Prefer small $\theta_\eta \approx 14^\circ$.
 - Predict $Br(D^0 \rightarrow 2K_S^0) = 1.87 \times 10^{-4}$ *
- Triplets and Sextets
 - ▶ 36 real parameters.
 - Prefer large $\theta_\eta \approx 22^\circ$.
 - Predict $Br(D^0 \rightarrow 2K_S^0) = 1.82 \times 10^{-4}$ *
- Both values of θ_{η} fall in the commonly accepted range.
- * This Br is measured to be $(1.6 \pm 0.1) \times 10^{-4}$. However it is predicted to be 0 in the diagrammatic analysis. [Bhattacharya, Rosner]

Summary

- Large ΔA_{CP} can be accommodated in SM taking into account flavor SU(3) breaking effects.
- Global analysis of *D*-meson decays is under way.