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Quasiealstic ν − N scattering

Quasiealstic ν − N scattering: ν` + n→ `− + p

basic signal for ν oscillation experiment

At the quark level: ν` + d → `− + u

Process “folded” twice

Quark: ν` + d → `− + u

⇓ Form factor

Nucleon ν` + n→ `− + p

⇓ Nuclear model

Nucleus: ν` + nucleus→ `− + ...
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Quark → Nucleon

The interaction

L =
GF√

2
V ∗ud ¯̀γα(1− γ5)ν ūγα(1− γ5)d .

Known current: ūγα(1− γ5)d

Parametrize 〈p(p′)|ūγα(1− γ5)d |n(p)〉 by form factors:

F1, F2, Fp, FA, functions of q2 = (p′ − p)2

Of the form factors, only the axial is not constrained

What do we know about FA(q2)?
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The Axial Mass

Consider a small q2 expansion of FA(q2)

- FA(0) = −1.269 is known from neutron decay

- Define the axial mass mA as

FA(q2) = FA(0)

[
1 +

2

m2
A

q2 + . . .

]
=⇒ mA ≡

√
2FA(0)

F ′A(0)

Common model for FA: the dipole model

FA = FA(0) [1− q2/(mdipole
A )2]−2

One parameter model for FA

Known to be inadequate for EM form factors

Gil Paz (Wayne State University) The axial mass of the nucleon 4



Nucleon → Nucleus

Experiments usually scatter ν off nuclei

Need a nuclear model: how do nucleons behave in the nucleus

Popular model: “Relativistic Fermi Gas” (RFG)

[Smith, Moniz, NPB 43, 605 (1972)]

Model validity and parameters from quasielastic e-nuclei scattering

Moniz, Sick, Whitney, Ficenec, Kephart, Trower, PRL 26, 445 (1971)
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The axial mass problem
Neutrino scattering:

mdipole
A = 1.35± 0.17 GeV

MiniBooNE Collaboration

PRD 81 (2010) 092005
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Pion electro-prodcution:

mdipole
A = 1.07± 0.02 GeV

Bernard, Elouadrhiri, Meissner

J. Phys. G 28, R1 (2002)
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Both use dipole ansatz for axial form factor

FA = FA(0) [1− q2/(mdipole
A )2]−2
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The axial mass problem
Axial mass mdipole

A = 1.35± 0.17 GeV
[MiniBooNE Collaboration, PRD 81 092005 (2010)]
Similar result from other recent ν experiments

- K2K SciFi: mdipole
A = 1.20± 0.12 GeV

[K2K Collaboration, PRD 74 052002 (2006)]

- K2K SciBar mdipole
A = 1.144± 0.077(fit)+0.078

−0.072(syst) GeV
Espinal, Sanchez, AIP Conf. Proc. 967, 117 (2007)

- Minos mdipole
A = 1.19+0.09

−0.1 (fit)+0.12
−0.14(syst) GeV

[MINOS Collaboration, AIP Conf. Proc. 1189, 133 (2009)]

Nomad: mdipole
A = 1.05± 0.02± 0.06 GeV

[NOMAD Collaboration, EPJ C 63, 355 (2009)]

Pion electro-prodcution: mdipole
A = 1.07± 0.02 GeV

Bernard, Elouadrhiri, Meissner, J. Phys. G 28, R1 (2002)

ν experiments before 1990: mdipole
A = 1.026± 0.021 GeV

Bernard, Elouadrhiri, Meissner, J. Phys. G 28, R1 (2002)
What could be the source of the discrepancy?
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Theoretical studies focus on nuclear modeling

Modify nuclear model
[Butkevich, PRC 82, 055501 (2010); Benhar, Coletti, Meloni, PRL 105,

132301 (2010); Juszczak, Sobczyk, Zmuda, PRC 82, 045502 (2010)]

Include multi-nucleon emission
[Martini, Ericson, Chanfray, Marteau
PRC 80, 065501 (2009), PRC 81, 045502 (2010);
Amaro, Barbaro, Caballero, Donnelly, Williamson
PLB 696, 151 (2011), PRD 84, 033004 (2011);
Nieves, Ruiz Simo, Vicente Vacas

PRC 83, 045501 (2011), arXiv:1106.5374]

Modify GM for bound nucleons but not GE or FA
[Bodek, Budd, EPJ C 71, 1726 (2011)]

All use dipole form factor

FA = FA(0) [1− q2/(mdipole
A )2]−2
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What is the axial mass?

The axial mass is defined as

FA(q2) = FA(0)

[
1 +

2

m2
A

q2 + . . .

]
=⇒ mA ≡

√
2FA(0)

F ′A(0)

Everyone extracts mdipole
A from

FA = FA(0) [1− q2/(mdipole
A )2]−2

mdipole
A is not mA!

When extractions of mdipole
A disagree is it

- Problem with the dipole model?

- Real disagreement between experiments?

Need to extract mA in a model independent way!
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Model independent extraction of mA

Need to extract mA in a model independent way!

How to do that?

Let’s look at a simpler problem: The charge radius of the proton
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Proton Charge Radius
Matrix element of EM current between nucleon states
gives rise to two form factors (q = p′ − p)

〈N(p′)|
∑
q

eq q̄γ
µq|N(p)〉 = ū(p′)

[
γµFN

1 (q2) +
iσµν
2m

FN
2 (q2)qν

]
u(p)

Sachs electric form factor

GE (q2) = F1(q2) +
q2

4m2
p

F2(q2)

Consider a small q2 expansion of Gp
E (q2)

- Gp
E (0) = 1

- The slope of Gp
E

r2p = 6
dGp

E

dq2

∣∣∣∣∣
q2=0

determines the charge radius rp
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Charge Radius Problem

Lamb shift in muonic hydrogen [Pohl et al. Nature 466, 213 (2010)]

rp = 0.84184(67) fm

electronic hydrogen [Mohr et al. RMP 80, 633 (2008)]

rp = 0.87680(690) fm

5σ discrepancy!

Electron-proton scattering data:

rp between 0.8− 0.9 fm [PDG 2010]

Using different models for Gp
E

How to avoid model dependence?
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z expansion
Standard tool in analyzing meson transition form factors

Analytic properties of Gp
E (t) are known

Map the domain of analyticity onto the unit circle

z(t, tcut, t0) =

√
tcut − t −

√
tcut − t0√

tcut − t +
√
tcut − t0

where tcut = 4m2
π, z(t0, tcut, t0) = 0

Expand Gp
E in a Taylor series in z : Gp

E (q2) =
∞∑
k=0

ak z(q2)k
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Analytic structure and ak

z(t, tcut, t0) =

√
tcut − t −

√
tcut − t0√

tcut − t +
√
tcut − t0

Analytic structure implies:

Information about ImGp
E (t + i0)⇒ information about ak

Can use data to constrain ak :

Arbitrary functional form with no change in rp

[Hill, GP PRD 82 113005 (2010)] studied the size of ak using
- vector dominance ansatz
- ππ continuum
- e+e− → NN̄ data

Found |ak | ≤ 10 very conservative

Results presented for |ak | ≤ 5 and |ak | ≤ 10
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Proton Charge Radius
[Hill, GP PRD 82 113005 (2010)]:

- previous extractions are model dependent
underestimated error by a factor of 2 or more

- Based on a Model-independent approach
rp = 0.871± 0.009± 0.002± 0.002 fm

CODATA value (extracted mainly from electronic hydrogen)
[Mohr et al. RMP 80, 633 (2008)]
rp = 0.8768(69) fm

Lamb shift in muonic hydrogen
[Pohl et al. Nature 466, 213 (2010)]
rp = 0.84184(67) fm

Theoretical treatment for muonic hydrogen is lacking
[Richard J. Hill, GP PRL 107 160402 (2011)]
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Goal

Extract mA in a model independent way: z expansion

Following the charge radius analysis: |ak | ≤ 5 and |ak | ≤ 10

Extract mA from fit to MiniBooNE data for dσ/dEµd cos θµ

[MiniBooNE Collaboration, PRD 81 092005 (2010)]

Mostly follow MiniBooNE’s analysis: use RFG as nuclear model
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Neutrino: Model independent approach

Our z expansion fit to MiniBooNE data (Assuming RFG):

Red: dipole, Blue: z , |ak | ≤ 5, Green: z , |ak | ≤ 10

Our fit using z expansion: mA = 0.85+0.22
−0.07 ± 0.09 GeV

Our fit using dipole model: mdipole
A = 1.29± 0.05 GeV

MiniBooNE’s fit: mdipole
A = 1.35± 0.17 GeV
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Pion Electro-production: Model independent approach

Is there a discrepancy with pion electro-production data?
Red: dipole, Blue: z , |ak | ≤ 5

Our fit using z expansion: mA = 0.92+0.12
−0.13± 0.08 GeV

Our fit using dipole model: mdipole
A = 1.00± 0.02 GeV

Bernard et. al. fit using dipole model: mdipole
A = 1.07± 0.02 GeV

Bernard, Elouadrhiri, Meissner, J. Phys. G 28, R1 (2002)
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Model independent approach

MiniBooNE (Assuming RFG):

mA = 0.85+0.22
−0.07 ± 0.09 GeV

m
dipole
A

= 1.29 ± 0.05 GeV

Pion electro-prodcution:

mA = 0.92+0.12
−0.13 ± 0.08 GeV

m
dipole
A

= 1.00 ± 0.02 GeV

Discrepancy is an artifact of the use of the dipole form factor!
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Going beyond mA

We can also extract FA directly from MiniBooNE data

Red: dipole, Green : z , |ak | ≤ 10

Error on FA underestimated in the dipole model
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Conclusions

Recent mdipole
A extractions from quasielastic ν − N scattering are

typically higher than pre-1990 ν experiments and pion
electro-production data

We presented model-independent extraction of the axial mass

from quasielastic ν − N scattering data using the z expansion

MiniBooNE (Assuming RFG):

mA = 0.85+0.22
−0.07 ± 0.09 GeV m

dipole
A

= 1.29 ± 0.05 GeV

Pion electro-prodcution:

mA = 0.92+0.12
−0.13 ± 0.08 GeV m

dipole
A

= 1.00 ± 0.02 GeV

As far as MA is concerned:

discrepancy is an artifact of the use of the dipole form factor!
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Future directions

Extract mA from other ν experiments, e.g. Minerνa

Is mA consistent between experiments?

mA from pion electro-production data, extrapolated from soft π limit

Extract mA in a model-independent way

ν experiments need FA, extract it from another source

After FA is under control, discuss nuclear models
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