arXiv:1203.1290

Strange Quark PDFs and Implications for W/Z Boson Production at the LHC

A. Kusina¹, T. Stavreva², S. Berge³, F. I. Olness¹, I. Schienbein², K. Kovařík⁴, T. Ježo², J. Y. Yu^{1,2}, K. Park¹

¹Southern Methodist University, Dallas, TX 75275, USA

²Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier/CNRS-IN2P3/INPG, 53 Avenue des Martyrs, 38026 Grenoble, France

³Institute for Physics (WA THEP), Johannes Gutenberg-Universität, D-55099 Mainz, Germany

⁴Institute for Theoretical Physics, Karlsruhe Institute of Technology, Karlsruhe, D-76128, Germany

The 2012 Phenomenology Symposium, 7-9 May 2012, Pittsburgh

- One of the most important source of uncertainties in the LHC are parton distribution functions (PDFs).
- Especially *s*-quark and heavy flavor PDFs are poorly constrained.
- PDFs uncertainties affect nearly all observables in particular benchmark processes used for calibration of Higgs boson and "new physics" searches.
- Here we concentrate on s-quark PDF and its impact on W/Z boson production

Extracting s-quark PDF

Predominant information on strange used to come from difference of NC and CC DIS F_2 structure function (at LO neglecting charm)

$$\Delta F_2 = \frac{5}{18} F_2^{CC} - F_2^{NC} \sim \frac{x}{6} [s(x) + \bar{s}(x)]$$

s is small compared to u and d PDFs \rightarrow large uncertainties \rightarrow it was assumed (CTEQ6.1, CTEQ6.5)

$$s(x) = \bar{s}(x) \sim \kappa \ \frac{\bar{u}(x) + \bar{d}(x)}{2}, \qquad \kappa = \frac{1}{2}$$

 \rightarrow underestimation of s PDF uncertainty, as $\bar{u},\,\bar{d}$ are much better constrained.

Extracting s-quark PDF

Starting with CTEQ6.6 (2008, arXiv:0802.0007) neutrino-nucleon dimuon data was included in the global fits \rightarrow more direct constrain of strange quark \rightarrow allow to fit *s* PDF independently of \bar{u} , \bar{d} sea.

Constraints of s-PDF – CCFR and NuTeV

Neutrino induced dimuon production $(\nu N \to \mu^+ \mu^- X)$ proceeds primarily through the Cabibbo favored $s \to c$ or $\bar{s} \to \bar{c}$ subprocess.

direct information on s and \bar{s} (contrary to ΔF_2)

Other possible constraints of s-PDF

■ **HERMES:** strange PDF via charged kaon production in positron-deuteron DIS

- $\blacktriangleright S(x) = s(x) + \bar{s}(x)$
- ▶ S(x) suppressed for $x \gtrsim 0.1$
- Hermes data is not included dynamically in global analyses
- **CHORUS:** measured neutrino structure functions F_2 , xF_3 , R in collisions of sign selected neutrinos and anti-neutrinos with a lead target \rightarrow results consistent with NuTeV
- **NOMAD:** high statistic neutrino-induced charm dimuon production – direct probe of the *s*-quark PDF → data analysis is continuing

Other possible constraints of s-PDF

- MINER vA: neutrino DIS on a variety of targets (plastic, helium, carbon, water, iron, and lead) 2010 finished construction and started data collection → allow to understand better nuclear corrections → lower uncertainties
- **CDF & D0:** measured Wc final states in $p\bar{p}$ collisions (at LO 90% produced via $sg \to W^- + c$)
 - \blacktriangleright direct probe of *s* PDF
 - ▶ no nuclear corrections

▶ different kinematic region then fixed-target neutrino experiments Current data $(1fb^{-1})$ in agreement with today PDF analyses.

ATLAS measured rapidity distributions for $Z \to l^+ l^-$, $W^+ \to l^+ \nu_l$ and $W^- \to l^- \bar{\nu}_l$; **CMS** rapidity distributions for $Z \to l^+ l^-$, and W + c production sensitive to s; **LHCb** W charge asymmetry (~ $35pb^{-1}$ 2010 data)

Impact of *s*-quark on W/Zproduction at LHC

W^+ production at LO $(d\sigma/dy)$

Tevatron

LHC

- s initiated processes at Tevatron were negligible
- at LHC they contribute substantially

s contribution to W/Z cross-section at LHC at NNLO with VRAP $(d\sigma^2/dM/dy \text{ at } M = m_{W/Z})$

significant s-quark contribution \rightarrow need to constrain s-PDF to have accurate predictions for LHC

Single peak (s) vs. double peak (u, d) distributions

- \rightarrow shape measurements of W/Z rapidity distributions
- \rightarrow information about relative s and u, d contributions

A. Kusina (SMU)

Correlations of the W/Z rapidity distributions for CTEQ6.5 (hep-ph/0611254)

Correlations of the W/Z rapidity distributions for CTEQ6.5 (hep-ph/0611254)

- errors for double ratios are order of magnitude smaller then for single ratios! $\rightarrow W$ and Z processes are highly correlated
- it is used for precision measurements (W mass) to calibrate W with help of Z boson
 - \blacktriangleright it works to the extent that W and Z production is correlated

In case of CTEQ6.5 W[±] and Z processes are strongly correlated.
This effect is much smaller for CTEQ6.6 PDFs.

- It is driven by independent treatment of *s*-quark PDF!
 - ▶ CTEQ6.5: $s = \bar{s} = \frac{1}{2} \frac{\bar{u} + \bar{d}}{2}$
 - ▶ CTEQ6.6: *s* independent from \bar{u} , \bar{d}

Correlations of the W/Z rapidity distributions

Once again freedom of the strange quark PDF is reflected in the freedom of W^{\pm} and Z cross-sections.

Summary

- s quark is poorly constrained, particularly in the low x region sensitive to W/Z production at the LHC
- l new/updated data can help reducing s PDF uncertainty
 - ► NOMAD
 - ▶ MINER ν A
 - ▶ CDF, D0
- W/Z measurements at the LHC can be an input for global PDF analyses
 - shape measurement of rapidity distribution relative measure of strange and valence PDFs
- doing precision measurements at LHC one needs to remember that proper s-PDF treatment decorelates W and Z processes.

BACKUP SLIDES

A. Kusina (SMU)

Strange Quark PDFs and Implication

10 May 2012 16

A. Kusina (SMU)

Strange Quark PDFs and Implication

10 May 2012 17

ATLAS strange measurement

ATLAS has used W/Z production to infer constraints on the strange quark distribution, they measured (arXiv:1203.4051)

 $r_s = 0.5(s+\bar{s})/\bar{d} = 1.00^{+0.25}_{-0.28}$

at $Q^2 = 1.9 \text{ GeV}^2$ and x = 0.023

CMS Wc final states measurement

CMS massured ratios of cross-sections using $36pb^{-1}$ of data (CMS-PAS-EWK-11-013)

$$R_c^{\pm} = \frac{\sigma(W^+\bar{c})}{\sigma(W^-c)} = 0.92 \pm 0.19(stat.) \pm 0.04(sys.)$$

see also: Stirling, Vryonidou, arXiv:1203.6781

$d\sigma^2/dM/dy$ at LHC for different PDFs vs. CTEQ6.6 error set $(M = m_{W/Z})$

 W^+

 W^-

spread of different PDFs $\sim \pm 8\%$ \rightarrow error sets don't account all uncertainties

should use errors in quadrature

CTEQ6.6 CT10 CTEQ6.5 CTEQ6.1 HERAPDF10

MSTW2008 NNPDF ABKM09 MRST2004

Z

Strange Quark Uncertainty

$$\begin{split} \kappa(x,Q) &= \frac{s(x,Q)}{[\bar{u}(x,Q) + \bar{d}(x,Q)]/2} \\ \text{Exact SU(3): } \bar{u} &= \bar{d} = \bar{s} \text{ and} \\ \kappa(x,Q) \sim 1 \end{split}$$

$$\Delta X = \frac{1}{2} \sqrt{\sum_{i=1}^{N_p} \left[X(S_i^+) - X(S_i^-) \right]^2}$$