

Prompt Photons at ATLAS

Regina Caputo (Universität Mainz)

Phenomenology Symposium 2012 – Pittsburgh

On Behalf of the ATLAS collaboration 6 May 2012

Outline

Photons – A brief introduction from the Standard Model Photon ID in the ATLA detector oss section measurements prompt photons photon+jet diphoton **Summary and Conclusions** Standard Model and Beyond

- Direct photons
 - produced hard scatter
 - @LHC Compton dominate at Leading Order (LO)
- Diphoton production
- LO is not the whole story...
 - QED radiation off quarks: ISR, FSR
 - Fragmentation
 - +direct = prompt
- PHOX family and ResBos MC generation for Next-to-LO
 - parton level
 - to correct (PS Monte Carlo with hadronization and UE) or additional systematic

- Direct photons
 - produced hard scatter
 - @LHC Compton dominate at Leading Order (LO)
- Diphoton production
- LO is not the whole story...
 - QED radiation off quarks: ISR, FSR
 - Fragmentation
 - +direct = prompt
- PHOX family and ResBos MC generation for Next-to-LO
 - parton level
 - to correct (PS Monte Carlo with hadronization and UE) or additional systematic

Photons can tell us

Standard Model

- Constrain Gluon PDF
 - sensitive to gluon content
 - high purity sample of quark jets
- Test pQCD
 - colorless probe of hard scattering
- Constrain photon fragmentation functions
- Calibrate jets

Beyond the Standard model

- Background to Higgs searches
- Background to SUSY/Exotics searches

Photons@ATLAS

- Particle requirements
 - Isolation

- Shower Shape Layer 2
 - width in η and φ
 - hadronic leakage
- Shower Shape Layer 1 (strips)
 - excellent η resolution (π^0)

Isolated Photons

Backgrounds to Photons

Photon Cross Sections

Ingredients to measure the cross section:

ε: efficiencies

N_{vield}: events after background subtraction

- U: Unfolding coefficients
 - evaluated using Pythia
 - bin-by-bin unfolding
 - inversion + regularization **Bayes or SVD**
 - ~1 (good resolution)

ΔE_T^{Y} : E_T bin size

) 400 True E⁷_T

NLO pQCD calculations JETPHOX using CTEQ 6.6 PDFs

- Theoretical predictions
 - Systematics from renormalization, factorization, fragmentation (~10%)
- Good in high E_{T} , fair in low E_{T}
 - NNLO corrections
- Results used to constrain PDFs by 20%
 - Nucl. Phys. B **3** 311-338
 (2012)

Photon Cross Sections

Photon+jet

- Photons produced with jets
 - 3 jet rapidity regions as a function of E_t^{γ}
- Fiducial/reconstruction requirements
 - Jet Algorithm: anti- k_{T} , R=0.4
 - Jet: p_T>25 GeV, |y|>4.4
 - photon: E_T>25 GeV, |η|>1.37
 - separated by $\Delta R > 1.0$
- Direction of photons/jets $- \eta^{\gamma} y^{jet} \ge or < 0$
- Different composition of fragmentation component

Data/Theon

Photon+jet

same sign

Theoretical Predictions: Systematics from scale, PDF, Isolation, hadronization and underlying event correction.

Fair agreement:

Data consistently lower than prediction in low E_t^{γ} region

• hint for need of NNLO (consistent with prompt photon results)

Photon Cross Sections

Diphotons

Diphotons

Generally good agreement:

Discrepancies in low $\Delta m_{\nu\nu}$ and $\Delta \phi_{\nu\nu}$

- same cause: fragmentation and $2\rightarrow 4$ processes
- argument NNLO: 2gNNLO box diagram (DeFlorian et. al)

Insight into QCD PDFs

- able to constrain PDFs with 2010 data
- analyzing ~5 fb⁻¹ results in progress
- more fragmentation, higher p_T, understand pileup

Backgrounds to new physics

- contributes to Higgs searches
- SUSY, model independent searches
- Also more exotic particles UED, graviton, resonance searches

BACKUPS

The PHOX Family

- What it does
 - NLO FORTRAN codes allowing users to compute single and double inclusive large p_T cross sections for reactions involving photons, hadrons and jets.
 - DIPHOX, JETPHOX, EPHOX and TWINPHOX
 - MRST99, MRST01, CTEQ5 and CTEQ6 PDFs for the proton
 - photo-production programs also include the AFG and the new AFB04 PDFs for the photon.
 - option to link any parton distribution from the PDFLIB is also provided.
 - production of massive heavy quarks is not described by these codes in which a massless approximation is used

- Pros
 - flexible and allows the users to impose almost any experimental cuts, jet definitions, cross section definition via a histogram package
- Warnings
 - The production of massive heavy quarks is not described by these codes in which a massless approximation is used
 - Not full event generators:
 - do not provide a full, exclusive portrait of events which could for example be further processed through a detector simulation
 - PHOX codes are not designed to be interfaced with parton showers and hadronisation models

models. See: http://lapth.in2p3.fr/PHOX_FAMILY/

May 7, 2012

Dominant Systematics

Theoretical

- Scale
 - renormalization,
 factorization, fragmentation
- PDF
 - from CTEQ 6.6 eigenvalues
- non-perturbative correction
 - maximum spread in Pythia
 (Perugia 2010) and Herwig
 (UE7000-2)
- Parton Isolation

Experimental

- Electron energy scale
- Photon Purity
- Unfolding technique
 - compare methods
- Central jet
 - same/opposite sign

Ratios to Theory

Photon+jet Systematics

- Central jet
 - same/opposite sign
- Dominant Systematics
 - Scale
 - renormalization, factorization, fragmentation
 - PDF
 - vary 68% CL
 - Isolation
 - 3/5 GeV
 - non-perturbative correction
 - maximum spread in Pythia (Perugia 2010) and Herwig (UE7000-2)

Diphotons

- Probe QCD
 - Δφ_{γγ} sensitive to fragmentation model
 - soft gluon emission $\Delta \phi_{\gamma\gamma} \sim \pi$ and low $p_{T,\gamma\gamma}$
- Irreducible background Higgs and BSM
- Differential cross section
 - $m_{\gamma\gamma}, p_{T,\gamma\gamma}, \Delta \varphi_{\gamma\gamma}$

Dominant Systematics

- normalization, fragmentation and factorization scales
- eigenvalues of PDFs
- MSTW 2008 PDF (CTEQ6.6)