LHC Discovery Potential for Non-standard Higgs Bosons in the 3b Channel

Arjun Menon University of Oregon

based on: arXiv:1203.1041 with Marcela Carena, Stefania Gori, Aurelio Juste, A.M., Carlos E.M. Wagner and

Lian-Tao Wang.

May 07, 2012

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Higgs Sector in 2HDMs

- ► The Neutral components acquire vevs and their ratio is $\tan \beta = v_u/v_d$.
- Neglecting CP violation in the Higgs sector, electroweak breaking leaves:

CP odd Higgs A
charged Higgs H⁺, and
CP even Higgs bosons h, H

- One CP-even (SM-like) Higgs has SM strength couplings to gauge particles.
- The other CP-even (Non-Standard) Higgs has suppressed couplings to gauge particles.

Couplings to b-quarks and τ -leptons in 2HDMs

General 2HDM Higgs fermions couplings are

$$\mathcal{L}_{Yuk} = y_u H_u \bar{Q}U + y_d H_d \bar{Q}D + \tilde{y}_u H_d^{\dagger} \bar{Q}U + \tilde{y}_d H_u^{\dagger} \bar{Q}D + y_\ell H_d \bar{L}E + \tilde{y}_\ell H_u^{\dagger} \bar{L}E + h.c$$

d-type fermion couplings to Non-standard Higgses are:

$$g_{(A/H)far{f}}\simeq rac{ar{m}_f}{m{v}} aneta_{ ext{eff}}^f$$
 tan $eta_{ ext{eff}}^f$

where

$$\tan \beta_{\text{eff}}^{f} = \frac{\tan \beta}{1 + \epsilon_{f} \tan \beta} \left(1 - \frac{\epsilon_{f}}{\tan \beta} \right)$$
$$\epsilon_{f} = \frac{y_{f}}{\tilde{y}_{f}}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● ● ● ●

Fermion couplings in the MSSM

Including 1-loop effects both quarks couple to both the Higgs bosons so that:

$$-\mathcal{L}_{eff} = \bar{d}_{R}^{0} \mathbf{\hat{Y}}_{d} [\Phi_{d}^{0*} + \Phi_{u}^{*0} \left(\hat{\epsilon}_{0} + \hat{\epsilon}_{Y} \mathbf{\hat{Y}}_{u}^{\dagger} \mathbf{\hat{Y}}_{u} \right)] d_{L}^{0} + h.c.$$

and have the structure:

$$\begin{aligned} \epsilon_0^{\,\prime} &\approx \frac{2\alpha_{\rm s}}{3\pi} M_3 \mu C_0(m_{\tilde{d}_1^{\prime}}^2, m_{\tilde{d}_2^{\prime}}^2, M_3^2) \\ \epsilon_{\rm Y} &\approx \frac{1}{16\pi^2} A_t \mu C_0(m_{\tilde{t}_1}^2, m_{\tilde{t}_2}^2, \mu^2) \end{aligned}$$

Kolda, Babu, Buras, Roszkowski...

 Low scale flavour structure of the squark masses determines the flavor structure of ε-loop factors.

Non-standard Higgs boson production and decay

• General **b** and τ couplings are

$$g_{Abb} \simeq rac{m_b an eta^b_{ ext{eff}}}{ extsf{v}}; g_{ extsf{A} au au} \simeq rac{m_ au an eta^ au_{ extsf{eff}}}{ extsf{v}}$$

Enhanced production and decay modes:

 $\frac{\sigma(b\bar{b}\to A)}{\sigma(b\bar{b}h)_{\rm SM}} \mathcal{BR}(A\to b\bar{b}) \propto \frac{(\tan\beta_{\rm eff}^b)^4 \bar{m}_b^2 N_c}{(\tan\beta_{\rm eff}^\tau)^2 \bar{m}_\tau^2 + (\tan\beta_{\rm eff}^b)^2 \bar{m}_b^2 N_c},$ $\frac{\sigma(gg, b\bar{b}\to A)}{\sigma(gg, b\bar{b}\to h)_{\rm SM}} \mathcal{BR}(A\to \tau\tau) \propto \frac{(\tan\beta_{\rm eff}^\tau)^2 (\tan\beta_{\rm eff}^b)^2 \bar{m}_\tau^2}{(\tan\beta_{\rm eff}^\tau)^2 \bar{m}_\tau^2 + (\tan\beta_{\rm eff}^b)^2 \bar{m}_b^2 N_c},$

Non-Standard Higgs into 3b: Production and Decay

- ► $\tan \beta_{\text{eff}}^{\tau}$ can be small compared to $\tan \beta_{\text{eff}}^{b} \Rightarrow$ weaker reach in the $\tau \tau$ channel.
- ► The $H/A \rightarrow b\bar{b}$ can be enhanced enough to make it competitive with the clean $\tau\tau$ channel.
- In addition to the 4b-final state we also have:

The Tevatron limits from this channel are significantly weaker than the LHC ττ limits.

Signal and Background Simulation

- Simulation used MG5 interfaced with Pythia 6.4.
- QCD background: Separately simulated the 3b+X and 2b+j+X where X= 1,2j
- Used k_t matching, with matching scale of 30 GeV.
- Background separation into *bbj* and 3b samples does not model b jets with p_T below ~ 40 GeV very well.
- b-jets are clustered using anti- k_T with $\Delta R = 0.4$.
- Jet energy smearing of $100\%/\sqrt{E/\text{GeV}}$.
- We assume a constant *b*-tagging efficiency of 60%, a *c*-jet mis-tag rate of 10% and a light-jet mis-tag rate of 1%.
- Low mis-tag rate of c- and light-jets leads to the bbj and 3b backgrounds being comparable

Selection I vs Selection II

- Selection I: Exactly 3 *b*-tagged jets with $p_T > 60$ GeV and $|\eta| < 2.0$.
- ► Selection II: Exactly 3 *b*-tagged jets with $p_T^{b_1} > 130$ GeV, $p_T^{b_{2,3}} > 50$ GeV and $|\eta| < 2.0$.
- Require M₁₂, M₁₃ or M₂₃ within 25 GeV window of Higgs mass.

For tan $\beta_{\text{eff}}^{b} = 30$ @ 30 fb⁻¹ 7 TeV LHC

	Selection I		Selection II	
	S/B	S/\sqrt{B}	S/B	S/\sqrt{B}
$m_A = 150 \text{ GeV}$	0.06	14.1	0.047	6.2
$m_A = 200 \text{ GeV}$	0.057	14.4	0.048	7.9
$m_A = 300 \text{ GeV}$	0.035	7.3	0.038	6.8
$m_A = 400 \text{ GeV}$	0.027	3.4	0.028	3.3

Signal and Background Distributions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Reach in the general 2HDM Model

▲□▶▲御▶▲臣▶▲臣▶ 臣 のQで

The 3b vs $\tau\tau$ in the MSSM

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ● ●

Conclusions

- The A → ττ LHC search puts weak limits on regions of large tan β^b_{eff} and small tan β^τ_{eff} in 2HDMs.
- ► The $A/H \rightarrow b\bar{b}$ is a complementary channel that probes parametric scenarios of large tan β_{eff}^{b} .
- ► The reach of the $A/H \rightarrow b\bar{b}$ channel is limited by low S/B for low to moderate tan β_{eff}^{b} , but can be powerful at large tan β_{eff}^{b} .

シック・ ビー 《ビッ・ビッ・『中・・マッ・