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Walking gauge coupling

• Walking technicolor requires a non-Abelian gauge theory
exhibiting nearly-conformal behavior over a certain finite
energy range.

• At high energy, the gauge coupling constant exhibits
asymptotic freedom.

• As the distance scale increases the coupling enters an
approximate scale invariance region of strong coupling where
it slows down (“walking” region).

• At still larger distances the gauge coupling begins to grow
rapidly until it enters the confinement region where there is no
longer any vestige of the scale symmetry.



Supergravity background

• Gauge-gravity duality provides an alternative means to
calculate the running in non-perturbative regions of coupling
constant space.

• Nunez, Papadimitriou and Piai 2 constructed a Type IIB
supergravity background dual to a strongly coupled N = 1
SUSY gauge theory which exhibits the above described
running behavior.

• The background is obtained by considering a supergravity
limit of a stack of NC D5 branes wrapping a 2-cycle resulting
in a specific ten-dimensional space-time.

• The invariant interval is further characterized by the
integration constant parameters C and T .

2Int. J. Mod. Phys. A25, 2837-2865 (2010).



Walking gauge coupling
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• The running t’Hooft gauge coupling constant g2NC/8π2

shows walking behavior. The logarithm of the renormalization
scale is related to the distance ρ into the bulk.

• The smaller the value of C , the stronger the gauge coupling in
the walking region.

• The smaller the value of T , the greater the length of the
walking region.



chiral symmetry breaking

• Anguelova, et al.3 added techni-flavors to the model by
embedding NF stacks of D7 and D7 branes in a U-shaped
geometry necessary for U(NF )× U(NF )→ U(NF ) symmetry
breakdown.

• They employed holographic techniques in order to study the
vector and axial vector meson contributions to the electroweak
precision parameters.

• The purpose of our work is to determine the stability of such
a D7-D7 techni-brane embedding.

• A D7 probe brane profile is obtained by solving the field
equations obtained from the Dirac-Born-Infeld (DBI) action of
the D7 brane with induced metric g(8).

3Nucl. Phys. B852, 39-60 (2011)



• The D7 branes were chosen to have complementary coordinates
as functions of the ρ coordinate only, θ = θ(ρ) and ϕ = ϕ(ρ).

• The location ρ0 of the tip of the branes is an integration constant.
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brane stability

• In order to determine the stability of this probe brane
embedding, small oscillations about the D7 brane profile are
considered in the (xµ, ρ) directions: θ(x , ρ) = π/2 + ∆θ(x , ρ),
ϕ(x , ρ) = ϕ(ρ) + ∆ϕ(x , ρ).

• Expanding the DBI action for the D7 brane to quadratic order
in the fluctuations ∆θ and ∆ϕ yields the fluctuation
Lagrangian.

• Separating the xµ and ρ variables gives the equations
∂2∆ϕ = M2

ϕ∆ϕ and similarly for ∆θ for the 4-dimensional
behavior.

• The D7 and D7 branes stack separately on each side of the
U-shaped embedding profile. In order to distinguish these
separate locations a transformation of coordinates from ρ to ζ
is introduced with the location of the D7 branes along ζ > 0
branch while the D7 branes are along the ζ < 0 branch.



• The fluctuation spectrum values of M2 for the techni-scalar
and techni-pseudoscalar meson modes must in general be
determined numerically for various values of ρ0, C and T .

• Insight into the spectrum can be obtained by considering
values of ρ in the walking region where the metric simplifies.

• The Schrödinger equations for the fluctuations in this case
become

−φ′′ϕ(ζ) + Vϕ(ζ)φϕ(ζ) = Eϕφϕ(ζ)
−φ′′θ(ζ) + Vθ(ζ)φθ(ζ) = Eθφθ(ζ).

• The meson masses are related to the energy eigenvalues as

Eϕ = CTM2
ϕe4ρ0 , Eθ = CTM2

θ e
4ρ0 .



Vϕ(ζ) = −1

4

(
ζ2 + 6

)
(ζ2 + 1)2

− λϕ
(ζ2 + 1)

λϕ = 0

Wϕ(ζ) =
1

ζ
− 1

2

ζ

1 + ζ2

Vθ(ζ) = −1

4

(
ζ2 − 2

)
(ζ2 + 1)2

− λθ
(ζ2 + 1)

λθ = Te4ρ0

Wθ(ζ) =
1

2

ζ

1 + ζ2

• The spectra can be understood in terms of approximate
supersymmetry and conformal symmetry.

• Since the superpotential Wϕ(ζ) is singular, supersymmetry does not
preclude the existence of negative energy states.

• Both models can be regarded as conformal quantum mechanics with
regulated singularity.

• The second term in each potential breaks supersymmetry.
• The parameter λθ is very small for values of the parameter T that

yield a substantial range of walking behavior.
• For large ζ the potentials asymptote to −1/4+λ

ζ2 .



∆θ fluctuation spectrum
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• Ground state (n = 1): solid
blue curve

• First excited state (n = 2):
dashed red curve

• There is an infinite number
of negative energy states.

• Rescaled energy

Ẽn ≡ En/e
− nπ√

λ

• Energy spectrum approaches

En = −C1e
− nπ√

λ for small λ.

• Numerically determined:
C1 = 5.02



∆θ fluctuation spectrum: with cut-off
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• large distance cut-off further
breaks conformal invariance

• dashed red curve: ground
state eigenfunction (n=1 )

• cut-off: ζΛ = 10

• λ = 0.1

• purple dotted curve: ground
state energy value in the
absence of a cut-off

• red dashed curve: ground
state energy of an infinite
square well



∆φ fluctuation spectrum
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• Ground state (n = 0): solid
blue curve

• First excited state (n = 1):
dashed red curve

• Second excited state
(n = 2): dotted black curve

• Infinite number of bound
states for λ > 0

• one deep lying bound state
(n=0) remains even at
λ = 0: E0 = −0.56

• Energy spectrum approaches

En = −C2e
− nπ√

λ for small λ
and n > 0.

• Numerically determined:
C2 = 0.67



∆φ fluctuation spectrum: with cut-off
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• dashed red curve: ground
state eigenfunction (n=0)

• cut-off: ζΛ = 10

• cut-off does not affect the
ground state energy unless it
is as low as the width of the
ground state wave-function
in the absence of a cut-off.

• λ = 0.0

• purple dotted curve: ground
state energy value in the
absence of a cut-off

• red dashed curve: ground
state energy of an infinite
square well



Summary

• The gravity dual to a N = 1 SUSY gauge theory which
exhibits an approximately conformal (“walking”) region while
strongly interacting was considered.

• Stacks of D7-D7 techni-branes corresponding to the addition
of techni-fermions in the gauge theory were embedded in the
10 dimensional space-time.

• Fluctuations of the embedded branes into complementary ϕ
and θ space were considered.

• The equations of motion took the form of one-dimensional
Schrödinger equations with factorizable Hamiltonians.



• The scalar and pseudoscalar meson mass squared spectrum
was obtained by numerically analyzing the Schrödinger
equations.

• Both of the ∆ϕ and ∆θ pseudoscalar meson fluctuations and
the ∆θ scalar meson fluctuations were found to be stable.

• However, the ∆ϕ scalar meson fluctuation was found to be
unstable having a negative mass squared value even for low
values of the cut-off.

• Whether a more general embedding of the stacks of D7-D7
branes involving the 2-cycle Σ2 used to wrap the stacked D5
branes of the gauge theory made from the twisting of the S2

coordinates θ, ϕ and the S3 coordinates θ̃, ϕ̃ and ψ will lead
to a stable techni-brane embedding remains to be investigated.


