Strategy to discover light stops/sbottoms with small mass-gap

Sunghoon Jung

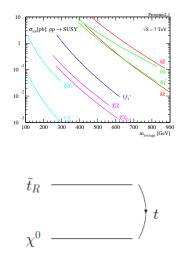
University of Chicago

PHENO @ Pittsburgh, May 08, 2012

Work in progress with David Krohn and Lian-Tao Wang

Sunghoon Jung Strategy to discover light stops/sbottoms with small mass-gap

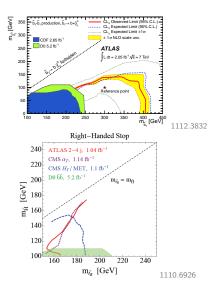
- Introduction & Motivation
- Setup
- Kinematics
- Search strategy
- Application to light stops/sbottoms


- Stops are important and special:
 - can give important loop contribution to Higgs mass (parameters).
- Light stops (\sim 200GeV) are interesting, allowed and realizable:
 - Naturalness
 - Not ruled out yet.
 - Arise in many SUSY models.
- Light sbottoms are often accompanied.

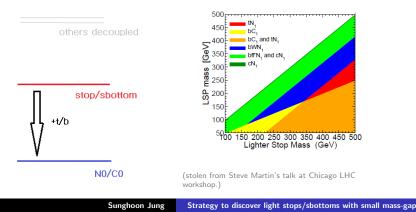
So interesting to look for light stops/sbottoms, and their discovery will tell us much about EWSB and SUSY!

Challenge

However, search is challenging.


- Small direct production (even smaller than g̃, ũ).
- Minimal scenario ($\tilde{t}_1 \tilde{t}_1^*$ with $\tilde{t}_1 \rightarrow t \chi^0$) will look very similar to $t \bar{t}$.
- Generally more sensitive to large mass-gap, and also many observables proposed (e.g. *M_{T2}* (Kats et al, Bai et al)).

Challenge


However, search is challenging.

- Small direct production (even smaller than g̃, ũ).
- Minimal scenario ($\tilde{t}_1 \tilde{t}_1^*$ with $\tilde{t}_1 \rightarrow t \chi^0$) will look very similar to $t\bar{t}$.
- Generally more sensitive to large mass-gap, and also many observables proposed (e.g. *M*_{T2} (Kats et al, Bai et al)).

Setup

- Goal is to develop a better strategy for light \tilde{t}_1/\tilde{b}_1 with small-gap.
- Small modification of minimal scenario opens up various possibilities (χ^0 + light \tilde{t}_1 or \tilde{b}_1 + possible χ^+ (almost degenerate)).

• We start with a simple case of

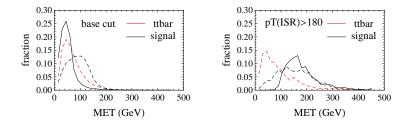
$$ilde{b}_1 ilde{b}_1^* + \textit{ISR}
ightarrow (b\chi^0) (ar{b}\chi^0) + \textit{ISR}$$

• As we'll see, the strategy developed for this can be applied to most other available channels in small-gap region

•
$$ilde{t}_1 ilde{t}_1^*$$
 with $ilde{t}_1 o b\chi^+$

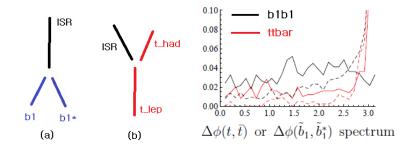
- $\tilde{t}_1 \tilde{t}_1^*$ with $\tilde{t}_1 \to t^* \chi^0$
- $\tilde{t}_1 \tilde{t}_1^*$ with $\tilde{t}_1
 ightarrow c \chi^0$

(They all share common kinematic features that we'll utilize.)

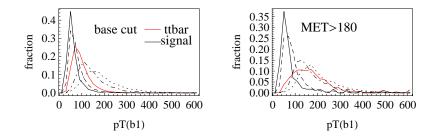

3. Kinematics of $\tilde{b}_1 \tilde{b}_1^*$ with small mass-gap

We focus on rejecting semi-leptonic $t\bar{t}$ bkgd.

Kinematics of $\tilde{b}_1 \tilde{b}_1^*$ vs. $t\bar{t}$

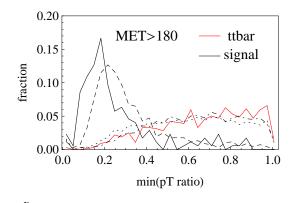

- $m_{\chi^0}/m_{{ ilde b}_1} \lesssim 1$ vs. $m_W/m_{top} \simeq 0.5.$
- Two χ^0 vs. single leptonic *W*.

 \Rightarrow 1. Under the boost of ISR jet, high-MET is resulted in for signal, but not for $t\bar{t}$. The boost of \tilde{b}_1 (due to high- p_T ISR) is efficiently transmitted to χ^0 , and two χ^0 s can be aligned.



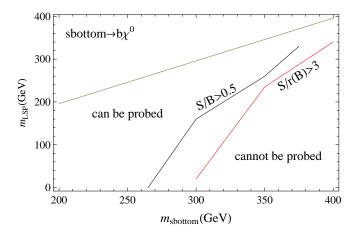
Kinematics of $\tilde{b}_1 \tilde{b}_1^*$ vs. $t\bar{t}$

2. $t\bar{t}$ obtains high-MET from different configuration.


3. With high-MET, signal *b*-jets stay relatively softer.

4. Search strategy

Discriminating Observable


• We can look for a jet (attributable to ISR) having *p*_T much greater than that of *b*-jets in high-MET events. (our specific choice is 2.8 times greater)

Ex: 300GeV \tilde{b}_1 with $\Delta m = 50$ GeV, we can retain 10% of signal, and reject 99.8% of $t\bar{t}$.

Discovery reach

@ 8TeV 30*fb*⁻¹

Sys dominated. Need to think more on very squeezed case ($\Delta m \lesssim 30 {\rm GeV}).$

Sunghoon Jung Strategy to discover light stops/sbottoms with small mass-gap

5. Application to other processes with small-gap

The same observables can be used to look for other important channels too.

Processes sharing the same kinematic feature:

- 1. $\tilde{t}_1 \rightarrow b\chi^+$: just smaller x-section and BR.
- 2. $\tilde{t}_1 \rightarrow c\chi^0$: can be important when only four-body decay $\tilde{t}_1 \rightarrow bW^*\chi^0$. *c*-tag is less efficient.

Ex) 300GeV \tilde{t}_1 w/ $\Delta m \sim 40$ GeV: $S/B \sim 0.3, S/\sqrt{B} > 6$ at 8TeV $100 fb^{-1}$.

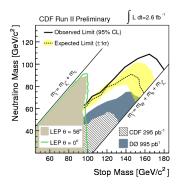


Figure: from CDF note 9834

Application to others with small-gap

Process with similar kinematic feature:

3. $\tilde{t}_1 \rightarrow t^* \chi^0$: Off-shell top produces soft decay products and deviations from on-shell top. *b* and ℓ . Could be easier in various directions, e.g. $m(b\ell)$ (Kats, Shih).

Ex) $m(b\ell)$ and our cuts work similarly well for \sim 300GeV ${ ilde t}_1$.

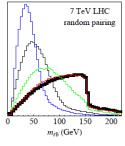


Figure: 1106.0030 Kats, Shih

- If we can discover (light) stops/sbottoms, we can learn really a lot about EWSB and SUSY.
- Squeezed case is especially hard to probe.
- However, useful kinematic differences exist.
- Measuring p_T ratio (rather than p_T itself) turns out to help greatly.
- Can also be applied to various other new physics, e.g. squeezed top-partner, charged Higgs.