Introduction	The model	Results	Concluding remarks

GUT-Inspired Scalar Models and the $t\bar{t}$ Forward-Backward Asymmetry Pheno 2012 Parallel Talk

David Stone

UCSD

May 7, 2012

hep-ph/1111.2050 [DS, P. Uttayarat] (Published in JHEP)

At the Tevatron

$$A_{FB}^{t\bar{t}} \equiv \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}$$

• Latest data still going strong!

$$\begin{split} A_{FB}^{t\bar{t}}(M_{t\bar{t}} < 450 \mbox{ GeV}) &= 0.078 \pm 0.054 \\ A_{FB}^{t\bar{t}}(M_{t\bar{t}} \ge 450 \mbox{ GeV}) &= 0.296 \pm 0.067 \\ \mbox{ Total: } A_{FB}^{t\bar{t}} \approx 0.182 \pm 0.045 \end{split}$$

 $(\int dt L = 8.7 \text{ fb}^{-1})$

Recent SM EW Sudakov and QCD corrections still do not account for $A_{FB}^{t\bar{t}}$

A different story at the LHC!

History of $A_{FB}^{t\bar{t}}(M_{t\overline{t}})$

Spin- 0, 1 and 2 models exist

- We use a spin-0 model with parameters dictated by GUT group theory
- Spin-0: Things to avoid:
 - s-channel particles
 - ▶ Light particles that can mediate *p*-decay

Couplings, masses, and quantum numbers all determined by GUT (in principle)

Our Model

SU(5) GUT

Light fields:

$$\begin{cases} \phi_1 : (\overline{6},3)_{-1/3} \\ \phi_2 : (6,1)_{4/3} \end{cases} \text{ in the 50}$$

 $\phi_3: (8,2)_{1/2}$ in the 45

Introduction	The model	Results	Concluding remarks
	0000		
Aspects of the r	nodel		

"Minimal" SU(5) model

Content:

Introduction	The model	Results	Concluding remarks
	0000		
Gauge coupling	unification		

 \mathbf{SM}

IntroductionThe model
oooResults
oooConcluding remarks
ooGauge coupling unification

SM + this model $\phi_1 = (\overline{6}, 3)_{-1/3}, \phi_2 = (6, 1)_{4/3}, \phi_3 = (8, 2)_{1/2}$

For $m_{\phi_1} \sim m_{\phi_2} \sim m_{\phi_3} \sim 500 \text{ GeV}$ and $\phi_1, \phi_2 \in 50, \phi_3 \in 45$

- No intermediate masses required
- Only scales are v and $M_{GUT} \sim 10^{17} \text{ GeV}$

Introduction	The model	Results	Concluding remarks
	0000		
Lagrangians	and couplings		

This specifies the light field Lagrangian:

$$\mathcal{L}_{\Phi} = \frac{y_{\overline{6}}^{ij}}{2} q_{Li\alpha}^T C q_{Lj\beta} \phi_1^{\alpha\beta} + \frac{y_{\overline{6}}^{ij}}{2} \overline{u_{Ra}}^i C \overline{u_{Rb}}^j \phi_2^{ab} + \text{h.c.}$$

 $y_{\overline{6}}$, y_6 from GUT Y_G via RG running:

Recall we have tuned the Yukawa coupling of the extra 45 to 0.

Choose flavor structure:

$$Y_G^{ij} \propto \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

Structure preserved under renormalization!

$$\begin{array}{l} y_{6}^{ij} = y_{6}^{ut} = y_{6}^{ut}, \\ y_{\overline{6}}^{ij} = y_{\overline{6}}^{ut} = y_{\overline{6}}^{ut} \end{array}$$

Introduction	The model	Results	Concluding remarks
	0000	000	00
Results- Total	$A_{FB}^{t\bar{t}}$		

1σ limits on CDF measurements

 $\begin{array}{c|c} Introduction & The model & Results \\ \circ & \circ & \circ & \circ \\ \hline \\ Results- Total t \overline{t} \ production & & & \circ \\ \hline \end{array}$

Model should not affect total $t\bar{t}$ production significantly

 1σ limits on CDF measurements

Constraints from A_C^y at the LHC

Other possible objections

- FCNC: Handled by flavor structure of Y_G^{ij}
- APV: Constraints are considerably lower due to Y_G^{ij} and m_{ϕ_i}
- Same-sign tops: None of the ϕ_i are self-conjugate

Model survives (for now) The Charge Asymmetry at the LHC and Caveats

Constraints from A_C^y at the LHC

Other possible objections

- FCNC: Handled by flavor structure of Y_G^{ij}
- **APV:** Constraints are considerably lower due to Y_G^{ij} and m_{ϕ_i}
- Same-sign tops: None of the ϕ_i are self-conjugate

Model survives (for now)

Introduction	The model	Results	Concluding remarks
O	0000	000	○●
Conclusion			

 $\lesssim 1\sigma$ agreement with CDF $8.7 \, \text{fb}^{-1}$ data

- Extra colored scalar content from SU(5)
- Light content constrained by running of couplings, no leptoquarks
- Yukawa/flavor structure chosen to match $A_{FB}^{t\bar{t}}$, evade low-energy constraints
- Sizeable number of parameters determined purely by group theory

Introduction	The model	Results	Concluding remarks
O	0000	000	
Conclusion			

 $\lesssim 1\sigma$ agreement with CDF $8.7 \, \text{fb}^{-1}$ data

- Extra colored scalar content from SU(5)
- Light content constrained by running of couplings, no leptoquarks
- Yukawa/flavor structure chosen to match $A_{FB}^{t\bar{t}}$, evade low-energy constraints
- Sizeable number of parameters determined purely by group theory

Thank you!