FEWZ: A Fully Exclusive Numerical Code for QCD and EW Correction to Drell-Yan Process

> Ye Li Northwestern University Argonne National Lab

Phenomenology 2012 Symposium Pittsburgh, PA Tuesday, May 8, 2012

#### Outline

EW Gauge Boson Production
FEWZ 2.1 with new improvement
FEWZ 3.0/3.1 with NLO QED/EW corrections
Concluding Remarks



## Z & W's at Hadron Colliders

Z & W production still very interesting
 playing an important role in LHC physics
 σ<sub>z</sub>, σ<sub>W</sub>

Iarge production cross sections: 1~10's of nbs



#### Z & W's at Hadron Colliders

- Clean Signal from their leptonic decay 0
- Detector calibration and performance 0
- Luminosity monitoring 0
- Look at new analysis tools 0
  - Low Z pT study: aT, etc. 0
  - Beam thrust: systematic theoretical treatment of jet veto 0
- Potential discovery of new physics beyond SM: 0
- Standard Candle Bump search: new gauge bosons, extra dimensions, composite particles, etc. 0
  - Deviation in lepton forward-backward asymmetry AFB 0
- Rich information on precision electroweak physics 0
  - Forward-backward asymmetry AFB helps determine weak mixing angle 0
- Study of perturbative QCD 0
  - pT distribution starts at NLO 0
  - DY as a theoretical laboratory for QCD techniques 0
    - pQCD fails at low pT and PS threshold region 0
    - Resummation technique first worked out for DY 0
- PDF measurement: 0
  - Distribution in Z rapidity measures/constraints PDFs 0
  - Low mass production sensitive to PDFs at small x value 0



## FEWZ: Precision Drell-Yan



Inclusive Cross Section at CM5

arXiv:hep-ex/ 1107.4789

 $\oslash$  Large amount of data  $\rightarrow$  small statistical error

Percent level physics requires NNLO QCD

## FEWZ: Precision Drell-Yan

#### arXiv:hep-ex/1109.5141

Measured in Fiducial Volume of the ATLAS detector

Results of different PDF sets as well as their uncertainties are calculated using FEWZ





#### FEWZ

Fortran based numerical code: compute W/Z DY cross sections in hadron colliders:

> two executables: FEWZw & FEWZz, for charged and neutral current DY production respectively

> perturbative order in QCD, CM energy and collider type (Tevatron or LHC)

fully exclusive in final state particles kinematics
numerical integration parameters (Vegas)
PDF sets (CTEQ, MSTW, HERA, NNPDF etc.)

## FEWZ 2.1: New Features

- OPDF error propagation & LHAPDF support
- Input file for run configuration
- simultaneous generation of predefined histograms
- ø various bin sizes
- smoothing parameters
- cumulative histograms
- reduced run time for NNLO calculations

### FEWZ at Work

LHC @ 7 TeV

#### arXiv:hep-ph/1201.5896



#### QED Corrections

- With percent level physics EW corrections needed:  $\alpha_{EW} \sim \alpha_s^2$
- Full NLO QED to Z implemented as our first step
  - Negative QED corr. tends to cancel positive QCD correction (arXiv:0907.0276, arXiv:hep-ph/0611241)
  - Can shift Z pole in the resonance region
  - QED FSR can cause difference depending on how we reconstruct leptons in the calorimeter

#### FEWZ 3.0

Sectroweak input coupling schemes

- Massive and massless lepton final states
- Input parameters and histograms for photon radiation

For completeness, tree level photon initiated channel is also included for PDF set with photon distribution function

#### FEWZ at Work

Comparison with Dittmaier and Huber's results for LHC @ 7 TeV using MRST2004QED

**Percentage Corrections** 

"D." represents the results of Dittmaier etc.
"O" means the result with massless lepton
"µ" denotes the result with muon
mass
photon-initiated channel

| $M_{ll}/{\rm GeV}$                      | > 50       | > 100      | > 200      | > 500        | > 1000        | > 2000         |
|-----------------------------------------|------------|------------|------------|--------------|---------------|----------------|
| LO(D.)                                  | 738.733(6) | 32.7236(3) | 1.48479(1) | 0.0809420(6) | 0.00679953(3) | 0.000303744(1) |
| $LO_0$                                  | 738.789(9) | 32.723(4)  | 1.483(1)   | 0.0809449(8) | 0.0067993(6)  | 0.0003038(1)   |
| $\mathrm{LO}_{\mu}$                     | 738.769(9) | 32.728(4)  | 1.483(1)   | 0.0809451(8) | 0.0067993(6)  | 0.0003037(1)   |
| $\delta^{\gamma\gamma,LO}(\mathbf{D}.)$ | 0.17       | 1.15       | 4.30       | 4.92         | 5.21          | 6.17           |
| $\delta^{\gamma\gamma,LO}$              | 0.17       | 1.15       | 4.30       | 4.92         | 5.21          | 6.18           |
| $\delta^{QED,rec}(\mathbf{D}.)$         | -1.81      | -4.71      | -2.92      | -3.36        | -4.24         | -5.66          |
| $\delta_0^{QED,rec}$                    | -1.80(1)   | -4.83(4)   | -2.84(8)   | -3.46(1)     | -4.33(4)      | -5.66(18)      |
| $\delta^{QED,rec}_{\mu}$                | -1.78(1)   | -4.74(9)   | -2.90(10)  | -3.45(1)     | -4.44(7)      | -5.21(31)      |
| $\delta^{QED}_{\mu}(\mathrm{D.})$       | -3.34      | -8.85      | -5.72      | -7.05        | -9.02         | -12.08         |
| $\delta^{QED}_{\mu}$                    | -3.39(1)   | -9.05(8)   | -5.78(7)   | -7.28(1)     | -9.29(7)      | -12.50(31)     |

#### FEWZ at Work LHC @ 7 TeV Z production 100.00 LO 50.00 -- NLO QED no rec. -- NLO QED dR>0.1 ----- NLO QED no rec. 102 --- NLO QED dR>0.1 Z pole is 10.00 shifted to 5.00 σ (pb) (qd) 10<sup>1</sup> slightly lower 1.00 value Standard cuts: 0.50 Standard cuts: 10<sup>0</sup> $p_{T,1} > 25 \text{ GeV}$ $p_{T,1} > 25 \text{ GeV}$ $|\eta_1| < 2.5$ $|\eta_1| < 2.5$ $M_{\rm H}$ > 50 GeV $M_{11} > 50 \text{ GeV}$ 0.10 $10^{-1}$ 0.05 60 80 100 120 140 30 40 50 60 70 $p_{T,l}$ (GeV) $M_{ll}$ (GeV) 100 NLO QED NLO QED no rec. 80 NLO QED dR>0.1 correction is 60 enhanced σ (pb) Standard cuts: -5 (%) when photon 40 Standard cuts: $p_{T,1} > 25 \text{ GeV}$ 6 $p_{T,1} > 25 \text{ GeV}$ $|\eta_1| < 2.5$ lepton $|\eta_1| < 2.5$ $M_{11} > 50 \text{ GeV}$ NLO QED no rec. 20 $M_{11} > 50 \text{ GeV}$ NLO QED dR>0.1 recombination -10 0 is off due to log(MI/MZ)-20 60 80 100 120 140 30 40 50 60 70 $p_{T,l}$ (GeV) $M_{11}$ (GeV)

#### FEWZ at Work

#### LHC @ 7 TeV Z production



# FEWZ at Work Can also use FEWZ to study $pp \rightarrow Z+y$

The photon pT distribution has a sudden drop at Mz/2-25GeV due to the Jacobian peak in



### EW Corrections

- Implementation of full EW corrections is currently under debugging
- Can Cause more negative shift of Z pole
- Relative large correction in higher mass region due to EW Sudakov logarithms: -10% for LHC @ 14 TeV
- Sector FEWZ 3.1 with EW correction coming up very soon

#### Further developments

EW correction for W is also important for better determining W mass, which will be added in the future

Small pT resummation for W and Z is also considered to be added for more accurate pT distribution

© effects only estimated (arXiv:0907.0276)

True calculation would be helpful

#### Conclusions

Sew gauge boson production is still a very important process at the LHC

standard candles

key processes for EW precision physics & PDFs

Implications for BSM physics

New version of FEWZ will provide NNLO QCD and NLO EW accuracy

True percent level physics

accurate differential distributions