New Direct Detection Phenomenology from Dark Sectors

Felix Yu Fermilab

arXiv:1205.xxxx

with Wolfgang Altmannshofer, Joachim Kopp Phenomenology Symposium 2012, University of Pittsburgh May 8, 2012

Motivation

 In the absence of non-gravitational signals, models of dark matter phenomenology have been driven by the WIMP scattering paradigm

- The WIMP miracle is a very attractive starting point

• Yet we can readily construct huge variety of scattering signals

The SM is a very attractive starting point

 Non-minimal dark matter sectors with new dark dynamics can give new direct detection phenomenology

Recent work with dark dynamics

Resonant scattering and recombination

Pospelov, Ritz (2008)

• Composite iDM, atomic DM

Alves, Behbahani, Schuster, Wacker (2009) Kaplan, Krnjaic, Rehermann, Wells (2010)

Quirky composite DM

Kribs, Roy, Terning, Zurek (2009)

Hidden charged DM

Ackermann, Buckley, Carroll, Kamionkowski (2008) Feng, Kaplinghat, Tu, Yu (2009)

Dynamical dark matter

Dienes, Thomas (2011)

Recent work with dark dynamics

Resonant scattering and recombination

Pospelov, Ritz (2008)

Composite iDM, atomic DM

Alves, Behbahani, Schuster, Wacker (2009) Kaplan, Krnjaic, Rehermann, Wells (2010)

Quirky composite DM

Kribs, Roy, Terning, Zurek (2009)

Hidden charged DM

Ackermann, Buckley, Carroll, Kamionkowski (2008) Feng, Kaplinghat, Tu, Yu (2009)

Dynamical dark matter

Dienes, Thomas (2011)

Inspired by the rich set of viable possibilities provided by dark dynamics, we identify a novel *multiple hit dark matter* signature for direct detection 4

 Traditional direct detection experiments focus on WIMP elastic scattering

• Motivated primarily by PAMELA, a resurgence of interest in inelastic DM models has occurred

• We consider a toy model with χ^+ , γ_D (and χ^0 spectator), with kinetic mixing between U(1)_D and U(1)_{em} χ^+

• We consider a toy model with χ^+ , γ_D (and χ^0 spectator), with kinetic mixing between U(1)_D and U(1)_{em} $\chi^0 \longrightarrow \chi^0$

- We add a small U(1)_D breaking term
- Leads to mixing between χ^0 and χ^+

Toy Model

Lagrangian

$$\mathcal{L} \supset -\frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{2} \epsilon F_{\mu\nu} F'^{\mu\nu} + i\bar{\chi}^+ D'_\mu \chi^+ + i\bar{\chi}^0 \partial_\mu \chi^0 - (\chi^0, \chi^+) \begin{pmatrix} m_{00} & m_{0+} \\ m_{+0} & m_{++} \end{pmatrix} \begin{pmatrix} \chi^0 \\ \chi^+ \end{pmatrix} .$$

Diagonalize mass matrix to obtain eigenstates

$$\begin{pmatrix} \chi^0 \\ \chi^+ \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix} \equiv U \begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix}$$

- Will take sin θ to be very small, so χ_1 is mostly comprised of neutral χ^0

Felix Yu, Pheno 2012

Toy Model

- Take Δm₂₁ ≈ 100 keV, assume χ₂ decays to light dark sector that do not comprise a significant fraction of DM density
- Initial scattering is controlled by cross section of (assuming U(1)_D unit charge) χ⁺

$$\sigma_{\chi^{+}p} = \frac{\epsilon^{2} e^{2} g'^{2}}{M_{A'}^{4}} \mu_{\chi p}^{2}$$

- Replace $g' \rightarrow g' \sin \theta$ for χ_1 cross section
- Replace $g' \to g' \cos \theta$ for χ_2 cross section
- Thus, the χ_1 cross section suppressed by kinetic mixing and mixing angle, while the χ_2 cross section only suppressed by kinetic mixing

Toy Model

• Borrowing terminology from neutrino physics, the initial scattering of χ_0 projects out the χ^+ component, which propagates as mixture of χ_1 and (mostly) χ_2 $\epsilon^2 e^2 q'^2$

$$\sigma_{\chi^+ p} = \frac{\epsilon^2 e^2 g'^2}{M_{A'}^4} \mu_{\chi p}^2$$

– Subsequent scatterings are not suppressed by mixing angle!

Toy Model – Concrete example

• Mean free path of χ^+ in matter

$$\lambda = \frac{\mu_{\chi p}^2}{Z_{\text{eff}}^2 \sigma_{\chi^+ p} \mu_{\chi N}^2 n}$$

- If we consider liquid Xe target, $Z_{eff} = 0.5 Z_{Xe}$, m_{χ} =100 GeV, $m_{A'}$ =100 MeV, g'=0.6, ϵ =4 ×10⁻³ gives $\lambda \approx 0.1$ cm
 - Corresponds to $\sigma(\chi^+ p) \approx 10^{-30} \text{ cm}^2$
- We find we need sin² $\theta \approx 10^{-15}$ to have the initial scattering at traditional WIMP rates

$$\sigma_{\chi^+ p} = \frac{\epsilon^2 e^2 g'^2}{M_{A'}^4} \mu_{\chi p}^2 \quad g' \to g' \sin \theta$$

Mixed DM Phenomenology

Secondary scatterings are unsuppressed

$$\sigma_{\chi^+ p} = \frac{\epsilon^2 e^2 g'^2}{M_{A'}^4} \mu_{\chi p}^2 \quad g' \to g' \cos \theta$$

- Subsequent evolution of χ_2 is model-dependent, but one characteristic signature is a **multiple hit track** similar to neutron background
 - Track length determined by lifetime of χ_2 , which is mainly constrained by BBN
 - We can choose average $N\lambda_{mfp}$ to be longer than detector fiducial volume, so χ_2 decays outside the detector
- Detector sensitivity to this multiple hit signature will be driven by accumulated energy profile and spatial resolution
 - Detectors with good spatial resolution will reject this signature as part of the neutron background
 14

Multiple Hit Signature

- Choose $N\lambda_{mfp}$ to right of left edge, λ_{mfp} to left of right edge
- Left edge determined by detector spatial resolution
- Right edge determined by edge of fiducial region

Summary

- Motivated by the rich possibilities of dark dynamics, we construct a DM model with a multiple hit signature, markedly different from traditional WIMP scattering
 - Constructing complete models that motivate the parameter choices used is well underway
 - Further work will investigate possibilities for retooling direct detection analyses (and perhaps neutrino detectors) to test alternatives to the WIMP paradigm

Multiple Hit Signature

	Xenon-100	DAMA	CoGeNT	CRESST
Spatial resolution	< 3 mm [10]	10 cm (x,y), 25 cm (z) [11]		4 cm [12]
Size of fiducial volume	$30 \mathrm{~cm} [10]$	50 cm (x, y) , 25 cm (z) [11]	$\sim 4~{\rm cm}$	$25~\mathrm{cm}$
Energy threshold (event)	8.4 keVnr [10]	2 keVee [11]	0.5 keVee [13]	10-19 keVnr [12]
Energy threshold (individual recoil)	$\simeq 3~{\rm keVnr}$	0.13-0.18 keVee [11]	$\sim 3~{\rm eV}$	none

