Dark Z Implications for Parity Violation, Rare Meson Decays, and Higgs Physics

Hooman Davoudias

HET Group, Brookhaven National Laboratory

Based on:

H. D., H.-S. Lee, and W. J. Marciano

• arXiv:1203.2947 [hep-ph]

• Work in progress

Pheno 2012, University of Pittsburgh

Light vector particles:

• Dark Matter interactions in the hidden sector

• Late annihilation rate of DM Fayet, 2004; Arkani-Hamed, Finkbeiner, Slatyer, Weiner, 2008

• GeV-scale Asymmetric DM abundance H.D., Morrissey, Sigurdson, Tulin, 2010

• $(g-2)_{\mu}$ anomaly Fayet, 2007; Pospelov, 2008

• Often coupled via kinetic mixing: $\frac{1}{2} \frac{\varepsilon}{\cos \theta_W} B_{\mu\nu} X^{\mu\nu}$ Holdom, 1986

• "Dark photon" coupled through $arepsilon\,eX^\mu J_\mu^{em}$

- This talk: "Dark" Z H.D., Lee, Marciano, arXiv:1203.2947 [hep-ph]
- Light vector Z_d , mass-mixing with SM Z:

$$M_0^2 = m_Z^2 \begin{pmatrix} 1 & -\varepsilon_Z \\ -\varepsilon_Z & m_{Z_d}^2/m_Z^2 \end{pmatrix}$$

with
$$\boxed{\varepsilon_Z = rac{m_{Z_d}}{m_Z}\delta}$$
 ($\delta \ll 1$); Z-Z_d mixing angle $\boxed{\boldsymbol{\xi} \simeq \varepsilon_Z}$ ($\varepsilon \simeq 0$).

• Three Aspects of Dark Z phenomenology

(I) Parity violation: atomic, ee and ep scattering.

(II) Flavor: emission of Z_d in rare K and B decays.

(III) Higgs at the LHC, in particular $H \rightarrow ZZ_d$.

• We consider 10 MeV $\lesssim m_{Z_d} \lesssim 10$ GeV.

Parity Violation

- Dark Z fermion couplings: $\mathcal{L}_{int} = \left[-e\varepsilon J^{em}_{\mu} \frac{1}{2}(g/\cos\theta_W)\,\varepsilon_Z J^{NC}_{\mu}\right] Z^{\mu}_d$
- Parity violating amplitudes $\mathcal{M}_{NC}^{\mathsf{PV}} = (G_F/2\sqrt{2})F(\sin^2\theta_W).$
- $G_F \to \rho_d G_F$ and $\sin^2 \theta_W \to \kappa_d \sin^2 \theta_W$

$$\rho_d = 1 + \delta^2 \frac{m_{Z_d}^2}{Q^2 + m_{Z_d}^2} \text{ and } \kappa_d = 1 - \frac{\varepsilon}{\varepsilon_Z} \delta^2 \frac{\cos \theta_W}{\sin \theta_W} \frac{m_{Z_d}^2}{Q^2 + m_{Z_d}^2}$$

- Atomic parity violation (APV)
- $Q_W = -N + Z(1 4\sin^2\theta_W).$
- $Q_W^{SM}({}_{55}^{133}Cs) = -73.16(5)$ and $Q_W^{exp}({}_{55}^{133}Cs) = -73.16(35)$.
- $Q_W^{\text{SM}} \rightarrow -73.16(1 + \delta^2) + 220(\varepsilon/\varepsilon_Z)\delta^2 \cos\theta_W \sin\theta_W.$

$$\Rightarrow \left| \delta^2 (1 - 1.27 \frac{\varepsilon}{\varepsilon_Z}) \right| \lesssim 0.006 \quad ; \quad \delta^2 \lesssim 0.006, \text{ for } \varepsilon \ll \varepsilon_Z$$

- Polarized electron scattering experiments: SLAC, JLAB, Mainz,...
- Mainly sensitive to κ_d .

- $m_{Z_d} \ll m_{K,B}$: longitudinal Z_d enhanced.
- Goldstone equivalence theorem (GET):

axion \leftrightarrow longitudinal Z_d

- Use $\overline{d}_L \gamma_\mu s_L \partial^\mu a$, $\overline{s}_L \gamma_\mu b_L \partial^\mu a$ to estimate $K \to \pi Z_d|_L$, $B \to K Z_d|_L$. Hall and Wise, 1981; Frere, Vermaseren, and Gavela, 1981; Freytsis, Ligeti, Thaler, 2009
- <u>Unlike</u> axions, $BR(Z_d \to e^+e^-) \simeq BR(Z_d \to \mu^+\mu^-)$.
- Ignore kinetic mixing, due to suppressed effect:

 $\mathsf{BR}(B o KZ_d) \sim 6 imes 10^{-7} \varepsilon^2$ for $m_{Z_d} \simeq 1$ GeV. Batell, Pospelov, and Ritz, 2009

- Adapting 2HD axion results for estimates: Hall and Wise, 1981
- ${\sf BR}(K^+ o \pi^+ Z_d)_{\rm long} \simeq 4 \times 10^{-4} \delta^2$
- $\mathsf{BR}(B \to KZ_d)_{\mathsf{long}} \simeq 0.1\delta^2$

•
$$m_{Z_d} \ll m_K$$
:
BR $(K^+ \to \pi^+ e^+ e^-)_{exp} = 3.00 \pm 0.09 \times 10^{-7}$
BR $(K^+ \to \pi^+ \mu^+ \mu^-)_{exp} = 9.4 \pm 0.6 \times 10^{-8}$
BR $(K^+ \to \pi^+ \nu \bar{\nu})_{exp} = 1.7 \pm 1.1 \times 10^{-10}$

 $\delta \lesssim 0.01/\sqrt{{
m BR}(Z_d o e^+e^-)} ~~;~~~ \delta \lesssim 0.001/\sqrt{{
m BR}(Z_d o {
m missing energy})}$

•
$$m_{Z_d} \ll m_B$$
:
BR $(B \to KZ_d \to K\ell^+\ell^-) < 10^{-7}$
BR $(B^+ \to K^+\bar{\nu}\nu)_{exp} < 1.4 \times 10^{-5}$

 $\delta \lesssim 0.001/\sqrt{{
m BR}(Z_d o \ell^+ \ell^-)} ~~;~~ \delta \lesssim 0.01/\sqrt{{
m BR}(Z_d o {
m missing energy})}$

•
$$\frac{\mathsf{BR}(Z_d \to e^+ e^-)}{\mathsf{BR}(Z_d \to \nu \overline{\nu})} \simeq \frac{1}{6} + \frac{1}{2} \left(\frac{\varepsilon}{\varepsilon_Z}\right)^2$$

Higgs Decays

- $H \to ZZ_d$
- Relevance extends to $m_{Z_d} \gg m_{K,B}$.
- Suppressed by $\varepsilon_Z^2 = (m_{Z_d}/m_Z)^2 \delta^2$.
- Enhanced by $\sim (m_H/m_{Z_d})^2$ for longitudinal Z_d .
- Assume $m_H = 125$ GeV, motivated by LHC hints.
- $\Gamma(H \to ZZ^* \to \ell_1^+ \ell_1^- \ell_2^+ \ell_2^-) \simeq 1.8 \times 10^{-6} \frac{G_F}{8\sqrt{2}\pi} m_H m_W^2$
- $\Gamma(H \to ZZ_d \to \ell_1^+ \ell_1^- \ell_2^+ \ell_2^-) \simeq 7 \times 10^{-3} \frac{G_F}{8\sqrt{2}\pi} m_H^3 \delta^2 \mathsf{BR}(Z_d \to \ell_2^+ \ell_2^-)$

LHC Prospects

- $m_{Z_d} = 5$ GeV and $\delta^2 BR(Z_d \rightarrow \ell^+ \ell^-) = 10^{-5}$.
- \bullet SM Higgs: $\sim 6.3 \times 10^{-9}~\text{GeV}$
- $H
 ightarrow ZZ_d$: ~ 4.5 imes 10⁻⁸ GeV
- 3σ evidence: $N_H \sim 10^6$ (current sample $N_H \sim 75000$).
- * Other reducible and irreducible backgrounds ignored for simple estimate.
- * ATLAS/CMS cuts for $H \rightarrow ZZ^*$: $M_{\ell\ell} \gtrsim 15$ GeV to avoid background.

A 2HDM Realization:

- SM SU(2) doublets H_1 and H_2 .
- Singelt H_d and H_2 carries dark charge under $U(1)_d$.
- $U(1)_d$ motivated to protect against FCNC effects in 2HDM.
- H_1 is SM-like (H) and H_2 is fermiophobic.

•
$$m_{Z_d}$$
 from $\langle H_d \rangle = v_d$ and $\langle H_2 \rangle = v_2$.

- $\delta = \sin \beta \sin \beta_d$ with $\tan \beta = v_2/v_1$ and $\tan \beta_d = v_2/v_d$.
- SM-like H_1 for tan $\beta \lesssim 1/3$.

Conclusions

- New physics may not (all) reside at $m_{\rm NP} \gg m_W$.
- Support from DM considerations and a potential $(g-2)_{\mu}$ anomaly.
- Z_d vector particles at or below \sim GeV.
- Contribution to m_{Z_d} from EWSB \rightarrow PV, Flavor, Higgs decays.

Process	Current (future) bound on δ	Comment
Low Energy Parity Violation	$\delta \lesssim 0.08 - 0.01 (0.001)$	Fairly independent of m_{Z_d} .
Rare K Decays	$\delta \lesssim 0.01 - 0.001 (0.0003)$	$m_{\pi}^2 < m_{Z_d}^2 \ll m_K^2.$
Rare <i>B</i> Decays	$\delta \lesssim 0.02 - 0.001 (0.0003)$	$m_\pi^2 < m_{Z_d}^{2^u} \ll m_B^2.$
$H ightarrow ZZ_d$	$\delta \lesssim (0.003 - 0.001)$	$m^2_{Z_d} \ll (\widetilde{m_H} - m^{-a}_Z)^2.$