Pheno 2012

LHC LIGHTS THE WAY TO NEW PHYSICS

NEUTRINO COSMOLOGY REDUX

Luis Anchordoqui

Earliest Observationally Verified landmarks

Monday, May 7, 12

OUTLINE

> Effective number of neutrinos
> CMB and BEN data/theory predictions

- Right-handed neutrinos are necessary in...
> The best of all models: U(1) for everone
> Joint constraints on milliweak interactions (CMB-BEN-LHC)
> Summary and Conclusions

Work done in collaboration with Hair Goldberg PRL 108 (2012) 081806

EFFECTIVE NUMBER OF NEUTRINOS

> Most straightforward variation of Standard Big-Bang Cosmology

- extra energy contributed by new relativistic particles " X "
> When X^{\prime} s don't share in energy released by $e^{ \pm}$annihilation - convenient to account for extra contribution to SM energy density by normalizing it to that of an equivalent neutrino species

$$
\rho_{X} \equiv \Delta N_{\nu} \rho_{\nu}=\frac{7}{8} \Delta N_{\nu} \rho_{\gamma} \quad\left(\text { with } \Delta N_{\nu}=N_{\nu}-3\right)
$$

Steigman, Schramm, and Gin, PLB66 (1977) 202
> For each additional relativistic degree of freedom:
if $T_{X}=T_{\nu} \Rightarrow\left\{\begin{array}{lll}\Delta N_{\nu}=1 & \text { for } & X=\text { any two - component fermion } \\ \Delta N_{\nu}=4 / 7 & \text { for } & X=\text { scalar }\end{array}\right.$
> If $X^{\prime} s$ have decoupled even earlier
and have failed to profit from heating when various other particle-antiparticle pairs annihilated
(or unstable particles decayed)
contribution to ΔN_{ν} from each such particle will be $\left\{\begin{array}{l}<1 \\ <4 / 7\end{array}\right.$

CAB

- Basic equation:

$$
\frac{\Delta N_{\nu}^{\mathrm{eff}}}{N_{\nu}^{\mathrm{eff}}} \simeq 2.45 \frac{\Delta\left(\Omega_{m} h^{2}\right)}{\Omega_{m} h^{2}}-2.45 \frac{\Delta z_{\mathrm{eq}}}{z_{\mathrm{eq}}}
$$

$>\Delta\left(\Omega_{m} h^{2}\right)$ from galaxy distributions and precise H_{0} measurements SDSS Collaboration, MNRAS 401 (2010) 2148 Res et al., ApP 699 (2009) 539
> Wilkinson Microwave Anisotropy Probe $-N_{\nu}^{\mathrm{eff}}=4.34_{-0.88}^{+0.86}(2 \sigma)$ WMAP Collaboration, ApIS 192 (2011) 18
> Atacama Cosmology Telescope $-N_{\nu}^{\mathrm{eff}}=4.56 \pm 0.75(68 \% \mathrm{CL})$ ACT Collaboration, ADJ 739 (2011) 52
> South Pole Telescope $-N_{\nu}^{\mathrm{eff}}=3.86 \pm 0.42(1 \sigma)$ SPT Collaboration, ApT 743 (2011) 28
> Though none of these measurements individually deviates from standard value by more than about 2σ

- they collectively rule out $N_{\nu}=3$ at approximately 99% CL

BBN

> Primordial ${ }^{4}$ He abundance is driven by decoupling of weak interaction (when neutrinos go out of equilibrium)

$$
Y_{p} \propto e^{-\left(m_{n}-m_{p}\right) / T_{\mathrm{dec}}}
$$

$>T_{\text {dec determined via }} \Gamma\left(T_{\mathrm{dec}}\right)=H\left(T_{\mathrm{dec}}\right)$
$T_{\mathrm{dec}}^{5}\left(g / M_{W}\right)^{4} M_{P l} \sim \sqrt{N} T_{\mathrm{dec}}^{2} \quad\left(\right.$ with $\left.M_{W} \sim 100 \mathrm{GeV}\right)$
$>$ For $\mathrm{BBN} \sim T \sim 5 \mathrm{MeV}$ \& $N \sim 10$
$>Y_{p}$ increases with N
> Observationally inferred primordial fractions of baryonic mass in ${ }^{4} \mathrm{He}$ have been constankly favoring $N_{\nu}^{\mathrm{eff}} \lesssim 3$ Simha and Steigman, JCAP O6 (2008) 016

DYNAMICAL DARK MATTER

> To produce an increase in $N_{\nu}^{\text {eff }}$ at CMB epoch

$$
\text { - but retaining SM value } N_{\nu}^{\mathrm{eff}} \text { for BBN }
$$

obvious possibility is production of relativistic particles (non-electromagnetically interacting) from decay of massive relic particles during/after BEN
> This has been considered in:
= Ichikawa, Kawasaki, Nakayama, Senami, and Takahashi, JCAP 0708 (2007) 008

- Fischer and Meyers, PRD 83 (2011) 063620
- Hasenkamp, PLB 707 (2012) 121
- Menestrina and Scherrer, PRD 85 (2012) 047301
- Hooper, Queiroz, and Cnedin, PRD 85 (2012) 063613
> Required delicate balance can be framed within recently proposed multi-component framework in which dark matter comprises vast ensemble of interacting fields with variety of different masses, mixings, and abundances Dienes and Thomas, PRD 86 (2012) 083523

HOWEVER...

$>$ Unexpectedly - recent determination of primordial 4 He mass fraction leads to $Y_{p}=0.2565 \pm 0.0010$ (stat) ± 0.0050 (syst)
(2σ higher than value given by standard BBN)

For $\tau_{n}=878 \pm 0.8 \mathrm{~s}-N_{\nu}^{\text {eff }}=3.80_{-0.70}^{0.80}(2 \sigma)$
Izotov and Thuan, ADJ 710 (2010) L67
> 4He observed primordial abundance has relative large systematic errors
Aver, Olive, and Skillman, JCAP 1103 (2011) 043
$>Y_{p}$ is predicted with precision of $\sim 0.2 \%$
D, ${ }^{3} \mathrm{He}$, and 7 Li with precisions of roughly $5 \%, 4 \%$ and 8% BUT
because of very precise measurement - constraint on N_{ν}^{eff} from D/H is competitive with that from Y_{p}
$>$ Setting aside ${ }^{4}$ He constraints
and combining CMB with BBN theory and observed D/H

$$
N_{\nu}^{\mathrm{eff}}=3.9 \pm 0.44(1 \sigma)
$$

Nollett and Holder, arXiv:1112.2683

HOW DO WE GET $\Delta N_{\nu}^{\mathrm{eff}} \sim 1$ WITH RIGHT-HANDED NEUTRINOS?

> Find model in which ν_{R} decouples during quark-hadron transition

- From previous equation - need non-zero coupling to gauge fields with $M \sim \mathrm{TeV}$
> D-brane candidate: $S U(3)_{C} \times S U(2)_{L} \times U(1)_{B} \times U(1)_{L} \times U(1)_{I_{R}}$
$>Y=\frac{1}{2}(B-L)+I_{R}$
$>B-L$ is non-anomalous if $3 \nu_{L}^{\prime}$ s are accompanied by $3 \nu_{R}^{\prime} s$
> Matter fields consist of six sets of Weyl fermion-antifermion pairs (Labeled by index $i=1 \ldots 6$)
> Gauging of B prevents fast proton decay
- mass via Green-Schwarz/Stuckelberg mechanism
> Gauging of L disallows heavy Majorana
- just 3 Dirac neutrinos with tinny Yukawas

Pictorial Representation of D-brane Construct

Cremades, Ibañez, and Marchesano, JHEP 0307 (2003) 0388

MODEL PARAMETERS

>3 couplings $g_{B}, g_{L}, g_{I_{R}}$
> 3 Euler angles w field rotation to coupling diagonal in Y fixes 2 angles
> Orthogonal nature of rotation - one constraint on couplings

$$
\frac{1}{g_{Y}^{2}}=\left(\frac{1}{2 g_{L}}\right)^{2}+\left(\frac{1}{6 g_{B}}\right)^{2}+\left(\frac{1}{2 g_{I_{R}}}\right)^{2}
$$

> Baryon number coupling g_{B}
fixed to be $1 / \sqrt{6}$ of $S U(3)$ coupling at $U(3)$ unification - determined elsewhere via RG running
>2 remaining d.of. allow further rotation leaving

$$
Z^{\prime} \text { to couple to } B \text { at } 95 \%
$$

$$
Z^{\prime \prime} \text { to couple to } B-L \text { at } 91 \%
$$

-- only boson masses are free --

THE DRAMATIS PERSONAE

$\underline{\text { Index Fields }}$ Sector $\quad S U(3)_{C} \times S U(2)_{L} U(1)_{B} U(1)_{L} U(1)_{I_{R}} U(1)_{Y} \quad g^{\prime} \quad g^{\prime \prime}$

1	U_{R}	$3 \rightarrow 1^{*}$	$(3,1)$	$\frac{1}{3}$	0	$\frac{1}{2}$	$\frac{2}{3}$	0.368	-0.028

2	D_{R}	$3 \rightarrow 1$	$(3,1)$	$\frac{1}{3}$	0	$-\frac{1}{2}$	$-\frac{1}{3}$	0.368	-0.209

3	L_{L}	$4 \rightarrow 2$	$(1,2)$	0	1	0	$-\frac{1}{2}$	0.143	0.143

| 4 | E_{R} | $4 \rightarrow 1$ | $(1,1)$ | 0 | 1 | $-\frac{1}{2}$ | -1 | 0.142 | 0.262 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

5	Q_{L}	$3 \rightarrow 2$	$(3,2)$	$\frac{1}{3}$	0	0	$\frac{1}{6}$	0.368	-0.119

$\begin{array}{llllllllll}6 & N_{R} & 4 \rightarrow 1^{*} & (1,1) & 0 & 1 & \frac{1}{2} & 0 & 0.143 & 0.443\end{array}$

| - | H | $2 \rightarrow 1$ | $(1,2)$ | 0 | 0 | $\frac{1}{2}$ | $\frac{1}{2}$ | 2.5×10^{-4} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 0.090

$\mathcal{L}_{\text {Yukawa }}=-Y_{d}^{i j} \bar{Q}_{i} H D_{j}-Y_{u}^{i j} \epsilon^{a b} \bar{Q}_{i a} H_{b}^{\dagger} U_{j}-Y_{\ell}^{i j} \bar{L}_{i} H E_{j}+Y_{\nu}^{i j} \epsilon^{a b} \bar{L}_{i a} H_{b}^{\dagger} N_{j}+$ h.c.
LAA, Antoniadis, Goldberg, Huang, Lïst, and Taylor, PRD 85 (2012) 086003

Obtaining decoupling temperature

> Adiabatic reheating of all particles except $\nu_{R}^{\prime} S$ after decoupling gives relation

$$
\Delta N_{\nu}^{\mathrm{eff}}=3\left(\frac{N\left(T_{\mathrm{end}}\right)}{N\left(T_{\mathrm{dec}}\right)}\right)^{4 / 3}
$$

> $T_{\text {end }}$ - temperature at end of reheating phase
$>N(T)=r(T)\left(N_{\mathrm{B}}+\frac{7}{8} N_{\mathrm{F}}\right)$-effective number of r.d.o.f. at T
$>r(T)=1$ for lepton/photon and $r(T)=s(T) / s_{\text {SB }}$ for $q g$ plasma
$>N\left(T_{\mathrm{dec}}\right)=37 r\left(T_{\mathrm{dec}}\right)+14.25$
$>N\left(T_{\text {end }}\right)=10.75$

LATTICE QCD

- Lower T coincides with most rapid rise of entropy
$>N(T)$ based on energy curve racher than entropy-similar

Bazavov et al,, PRD $80(2009) 014804$

QUARK-HADRON CROSSOVER TIRANSITION

> Excess r.d.o.f. within 1σ of central value of each if

$$
\begin{array}{rlrl}
& 0.46 & <\Delta N_{\nu}^{\mathrm{eff}} & <1.08 \\
\rightarrow & 23 & <N\left(T_{\mathrm{dec}}\right) & <44 \\
\rightarrow \quad 0.24 & <r\left(T_{\mathrm{dec}}\right) & <0.80
\end{array}
$$

- From lattice QCD study - this transtates to a temperature range $175 \mathrm{MeV}<T_{\text {dec }}<250 \mathrm{MeV}$
Bazavov et al., PRD 80 (2009) 014504
> Decoupting of ν_{R} occurs when

$$
\nu_{R} \text { m.f.p. } \geq \text { horizon size } \Rightarrow \Gamma^{\mathrm{int}}\left(T_{\mathrm{dec}}\right)=H\left(T_{\mathrm{dec}}\right)
$$

\square
Thermal equilibrium \rightarrow int $=$ scatt + ann
Chemical equilibrium \rightarrow int $=$ ann

$$
H(T)=1.66\langle N(T)\rangle^{1 / 2} T^{2} / M_{\mathrm{Pl} 1}
$$

AS A CHECK ...

behavior of trace anomaly
(which is very sensitive to behavior in crossover region)

shows a sharp peak at 200 MeV
and our range for $T_{\text {dec }}$ straddles this region
> Including s - $0.18<r(T)<0.63$

CROSS SECTIONS

> All is fixed except for Z^{\prime} and $Z^{\prime \prime}$ masses
> For interaction rate

- take average over angles and thermal average over energies

$$
\begin{array}{rll}
\Gamma^{\mathrm{scat}}(T) & \simeq & 2.0 G_{\mathrm{eff}}^{2} T^{5} \\
\Gamma^{\mathrm{ann}}(T) & \simeq & 0.50 G_{\mathrm{eff}}^{2} T^{5} \\
G_{\mathrm{eff}}^{2} \sim \sum G_{i}^{2} & \text { with } & 4 \frac{G_{i}}{\sqrt{2}}=\frac{g_{6}^{\prime} g_{i}^{\prime}}{M_{Z^{\prime}}^{2}}+\frac{g_{6}^{\prime \prime} g_{i}^{\prime \prime}}{M_{Z^{\prime \prime}}^{2}}
\end{array}
$$

$>$ By setting in turn $\quad \Gamma^{\text {ann }}(T)=H(T) \simeq 10.4 T^{2} / M_{\mathrm{Pl}}$
and

$$
\Gamma^{\mathrm{ann}}(T)+\Gamma^{\text {seat }}(T)=H(T) \simeq 10.4 T^{2} / M_{\mathrm{Pl}}
$$

one arrives at two values of $T_{\text {dec }}$

$$
\text { Chemical equilibrium } \rightarrow T_{\mathrm{dec}}=2.75\left(G_{\mathrm{eff}}^{2} M_{\mathrm{Pl}}\right)^{-1 / 3}
$$

Thermal equilibrium $\rightarrow T_{\text {dec }}=1.60\left(G_{\mathrm{eff}}^{2} M_{\mathrm{Pl}}\right)^{-1 / 3}$
> When each of these is required to lie between 176 MeV and 250 MeV

- allowed regions of Z^{\prime} and $Z^{\prime \prime}$ masses are defined in each case

CONSTRANTS

- Dark shaded areas show region allowed from decoupling requirements to accommodate CMB and BBN data
> Light shaded regions indicate masses excluded by LHC7 dijel searches
> These kwo estimates should serve to bracket size of actual effect
> Designation of B corresponds to Z' and B - L to Z'
LAA and Goldberg, PRL 108 (2012) 081806

SUMMARY AND CONClUSIONS

- We developed dynamic explanation of recent hints that relativistic component of energy during BBN and CMB epochs is equivalent to about 1 extra Weyt neutrino
We work within (string base) $U(3)_{C} \times S U(2)_{L} \times U(1)_{R} \times U(1)_{L}$ gauge theory \square Model endowed with $3 U(1)$ gauge symmetries coupled to B, L, I_{R} - Rotation of gauge fields to basis exactly diagonal in Y and very nearly diagonal in $B-L$ and B fixes all mixing angles and gauge couplings - Requiring $B-L$ current be anomaly free implies existence of 3 right-handed Weyl neutrinos
Task then reverts to explain why there are not 3 additional r.d.of.
We find that for certain ranges of M_{B} and M_{B-L} decoupling of ν_{R} 's occurs during course of quark-hadron crossover transition - just so that they are only partially reheated compared to ν_{L} 's
- Corresponding upper and lower bounds on gauge field masses yield ranges to be probed at LHC

