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Outline

 ➤  Right-handed neutrinos are necessary in...

➤  The best of all models: U(1) for everone

➤  Joint constraints on milliweak interactions (CMB-BBN-LHC)

➤  Summary and Conclusions

➤  CMB and BBN data/theory predictions

➤ Effective number of neutrinos 

Work done in collaboration with Haim Goldberg
PRL 108 (2012) 081805
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Steigman, Schramm, and Gunn, PLB66 (1977) 202

Effective Number of Neutrinos
➤	 Most straightforward variation of Standard Big-Bang Cosmology 
☛ extra energy contributed by new relativistic particles “  ’’X

➤	 When      don't share in energy released by      annihilation 
☛ convenient to account for extra contribution to SM energy density

by normalizing it to that of an equivalent neutrino species

X 0s

➤	 For each additional relativistic degree of freedom:

 ➤	 If      have decoupled even earlier X 0s

when various other particle-antiparticle pairs annihilated
(or unstable particles decayed)      

contribution to         from each such particle will be�N⌫

e±

and have failed to profit from heating

n
<1
<4/7

if TX = T⌫ )
⇢

�N⌫ = 1 for X = any two� component fermion

�N⌫ = 4/7 for X = scalar

⇢X ⌘ �N⌫⇢⌫ =
7

8
�N⌫⇢� (with �N⌫ = N⌫ � 3)
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 CMB
 ➤ Basic equation:

 ➤ from galaxy distributions and precise       measurementsH0

 ➤  Wilkinson Microwave Anisotropy Probe ☛ N e↵
⌫ = 4.34+0.86

�0.88 (2�)
WMAP Collaboration, ApJS 192 (2011) 18

➤ Atacama Cosmology Telescope ☛  

ACT Collaboration, ApJ 739 (2011) 52

N e↵
⌫ = 4.56± 0.75 (68%CL)

➤ South Pole Telescope ☛  

SPT Collaboration, ApJ 743 (2011) 28

N e↵
⌫ = 3.86± 0.42 (1�)

➤ Though none of these measurements individually deviates 
2�

at approximately

 from standard value by more than about 

99% CL☛ they collectively rule out N⌫ = 3

SDSS Collaboration, MNRAS 401 (2010) 2148 Riess et al., ApJ 699 (2009) 539

�N e↵
⌫

N e↵
⌫

' 2.45
�(⌦mh2)

⌦mh2
� 2.45

�zeq
zeq

�(⌦mh2)
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 BBN
Primordial ⁴He abundance is driven by decoupling of weak interaction
(when neutrinos go out of equilibrium)

➤

Yp / e�(mn�mp)/Tdec

➤ Tdec determined via �(Tdec) = H(Tdec)

T 5
dec (g/MW )4MPl ⇠

p
N T 2

dec (with MW ⇠ 100 GeV)

➤ For BBN ☛ T ⇠ 5 MeV N ⇠ 10&

increases with ➤

➤

NYp

Observationally inferred primordial fractions of baryonic mass in ⁴He

have been constantly favoring 

Simha and Steigman, JCAP 06 (2008) 016

N e↵
⌫ . 3
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Dynamical Dark Matter
➤	 To produce an increase in N e↵

⌫

☛ but retaining SM value  
at  CMB epoch 

N e↵
⌫ for BBN

from decay of massive relic particles during/after BBN
➤	 This has been considered in:
➢ Ichikawa,  Kawasaki,  Nakayama,  Senami, and Takahashi, JCAP 0705 (2007) 008

➢ Fischler and Meyers, PRD 83 (2011) 063520

➢ Hasenkamp, PLB 707 (2012) 121

➢ Menestrina and Scherrer, PRD 85 (2012) 047301

➢ Hooper, Queiroz, and Gnedin, PRD 85 (2012) 063513

     with variety of different masses, mixings, and abundances
Dienes and Thomas, PRD 85 (2012) 083523

➤	 Required delicate balance can be framed                                             
within recently proposed multi-component framework 

                                                               in which dark matter comprises vast ensemble of interacting fields

obvious possibility is production of relativistic particles
(non-electromagnetically interacting)
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However...
➤Unexpectedly ☛ recent determination of primordial ⁴He mass fraction

 leads to Yp = 0.2565± 0.0010(stat)± 0.0050(syst)

2�(     higher than value given by standard BBN)

For

For ⌧n = 878± 0.8 s ☛ N e↵
⌫ = 3.800.80�0.70 (2�)

Izotov and Thuan, ApJ 710 (2010) L67
➤⁴He observed primordial abundance has relative large systematic errors

Aver, Olive, and Skillman, JCAP 1103 (2011) 043

is predicted with precision of ➤ Yp ⇠ 0.2%
with  precisions of  roughly 5%, 4% and 8%

because of very precise measurement ☛ constraint on
BUT

N e↵
⌫

from D/H is competitive with that from Yp

➤Setting aside ⁴He constraints

N e↵
⌫ = 3.9± 0.44 (1�)

Nollett and Holder, arXiv:1112.2683

and combining CMB with BBN theory and observed D/H

D, ³He, and ⁷Li 
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How do we get with right-handed neutrinos?

➤

➤

➤	 Find model in which 

�N e↵
⌫ ⇠ 1

⌫R decouples during quark-hadron transition

➤	 From previous equation ☛ need non-zero coupling to gauge fields

M ⇠ TeVwith

➤	 D-brane candidate: SU(3)C ⇥ SU(2)L ⇥ U(1)B ⇥ U(1)L ⇥ U(1)IR

Y =
1

2
(B � L) + IR

is non-anomalous if B � L 3 ⌫L
0s 3 ⌫R

0sare accompanied by

➤	 Matter fields consist of six sets of Weyl fermion-antifermion pairs 
(labeled by index i = 1 . . . 6)

B

L

➤	 Gauging of     prevents fast proton decay

☛ mass via Green-Schwarz/Stuckelberg mechanism

➤	 Gauging of    disallows heavy Majorana 

☛ just 3 Dirac neutrinos with  tinny  Yukawas
9Monday, May 7, 12
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Cremades, Ibañez, and Marchesano, JHEP 0307 (2003) 0388
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Model Parameters
➤	 3 couplings gB , gL, gIR

➤	 3 Euler angles ☛ field rotation to coupling diagonal in   fixes 2 anglesY

➤	 Orthogonal nature of rotation ☛ one constraint on couplings

1

g2Y
=

✓
1

2gL

◆2

+

✓
1

6gB

◆2

+

✓
1

2gIR

◆2

➤	 Baryon number coupling gB

fixed to be SU(3) U(3)of coupling at unification

➤	 2 remaining d.o.f. allow  further rotation leaving  

-- only boson masses are free --

 at 

atZ 0 B

Z 00

95%

91%B � L

  to couple to   

to couple to   

☛ determined elsewhere via RG running

1/
p
6
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14

The Dramatis Personae

Index Fields Sector SU(3)C × SU(2)L U(1)B U(1)L U(1)IR U(1)Y g′ g′′

1 UR 3 → 1∗ (3, 1) 1

3
0 1

2

2

3
0.368 −0.028

2 DR 3 → 1 (3, 1) 1

3
0 −

1

2
−

1

3
0.368 −0.209

3 LL 4 → 2 (1, 2) 0 1 0 −
1

2
0.143 0.143

4 ER 4 → 1 (1, 1) 0 1 −
1

2
−1 0.142 0.262

5 QL 3 → 2 (3, 2) 1

3
0 0 1

6
0.368 −0.119

6 NR 4 → 1∗ (1, 1) 0 1 1

2
0 0.143 0.443

- H 2 → 1 (1, 2) 0 0 1

2

1

2
2.5× 10−4 0.090

LYukawa = −Y ij
d Q̄i HDj − Y ij

u εab Q̄ia H
†
b Uj − Y ij

! L̄iH Ej + Y ij
ν εab L̄ia H

†
b Nj + h.c.

The Dramatis Personae

LYukawa = �Y ij
d Q̄i HDj � Y ij

u ✏ab Q̄ia H
†
b Uj � Y ij

` L̄i H Ej + Y ij
⌫ ✏ab L̄ia H

†
b Nj + h.c.

LAA, Antoniadis, Goldberg, Huang, Lust, and Taylor, PRD 85 (2012) 086003 
..
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Obtaining Decoupling Temperature

➤	 Adiabatic reheating of all particles except        after decoupling

☛ temperature at end of reheating phase➤

☛ effective number of r.d.o.f. at ➤

gives relation

�N e↵
⌫ = 3

✓
N(Tend)

N(Tdec)

◆4/3

Tend

N(T ) = r(T )(NB +
7

8
NF)

 for lepton/photon andr(T ) = 1➤ r(T ) = s(T )/sSB

➤

➤

qg for plasma

N(Tdec) = 37 r(Tdec) + 14.25

N(Tend) = 10.75

⌫R
0s

T
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Lattice QCD
➤	 Lower    coincides with most rapid rise of entropy

➤

T

N(T ) based on energy curve rather than  entropy-similar

Bazavov et al., PRD 80 (2009) 014504
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Quark-Hadron Crossover Transition

• Lower T coincides with most rapid rise of entropy

• N(T ) based on energy curve rather than entropy — similar
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➤	 Excess r.d.o.f. within     of central value of each if1�

0.46 < �N e↵
⌫ < 1.08

! 23 < N(Tdec) < 44

! 0.24 < r(Tdec) < 0.80

➤	 From lattice QCD study ☛ this translates to a temperature range

175 MeV < Tdec < 250 MeV
Bazavov et al., PRD 80 (2009) 014504

➤	 Decoupling of ⌫R occurs when 

⌫R m.f.p. � horizon size ) �

int
(Tdec) = H(Tdec)

Thermal equilibrium ! int = scatt + ann

Chemical equilibrium ! int = ann

H(T ) = 1.66 hN(T )i1/2 T 2/MPl

Quark-Hadron Crossover Transition
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As a check ...

(which is very sensitive to behavior in crossover region)

and our range for       straddles this regionTdec

200 MeVshows a sharp peak at 

behavior of trace anomaly 

➤	 Including s ☛ 0.18 < r(T ) < 0.63
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Cross Sections
➤	 All is fixed except for and massesZ 0 Z 00

➤	 For interaction rate

�scat(T ) ' 2.0 G2
e↵ T 5

�ann(T ) ' 0.50 G2
e↵ T 5

G2
e↵ ⇠

X
G2

i with 4
Gip
2
=

g06 g0i
M2

Z0
+

g006 g00i
M2

Z00

➤	 By setting in turn �ann(T ) = H(T ) ' 10.4 T 2/MPl

and

�ann(T ) + �scatt(T ) = H(T ) ' 10.4 T 2/MPl

one arrives at two values of Tdec

Chemical equilibrium ! Tdec = 2.75 (G2
e↵ MPl)

�1/3

Thermal equilibrium ! Tdec = 1.60 (G2
e↵ MPl)

�1/3

➤	 When each of these is required to lie between 175 MeV and 250 MeV 
☛ allowed regions of      and      masses are defined in each caseZ 0 Z 00

☛ take average over angles and thermal average over energies
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Constraints

➤ Light shaded regions indicate masses excluded by LHC7 dijet searches 
➤	 These two estimates should serve to bracket size of actual effect 
➤ Designation of B corresponds to Z′ and B − L to Z′′

to accommodate CMB and BBN data
➤ Dark shaded areas show region allowed from decoupling requirements
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LAA and Goldberg, PRL 108 (2012) 081805
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Summary and Conclusions
❑ We developed dynamic explanation of recent hints that                      

❑ We work within (string base) gauge theoryU(3)C ⇥ SU(2)L ⇥ U(1)R ⇥ U(1)L

❏ Model endowed with          gauge symmetries coupled to

 ❏  Rotation of gauge fields to basis exactly diagonal in   

❏ Requiring         current be anomaly free 
implies existence of 3 right-handed Weyl neutrinos

❑ Task then reverts to explain why there are not 3 additional r.d.o.f.

occurs during course of quark-hadron crossover transition

❑ We find  that for certain ranges of      and        decoupling of  

☛ just so that they are only partially  reheated compared to  

❑ Corresponding upper and lower bounds on gauge field masses
  yield  ranges to be probed at LHC

MB MB�L ⌫R
0s

⌫L
0s

is equivalent to about 1 extra Weyl neutrino
relativistic component of energy during BBN and CMB epochs                

B � L

B � L B

3U(1) B, L, IR

and very nearly diagonal in          and
Y

fixes all mixing angles and gauge couplings
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