PHEND 202 LHC LIGHTS THE WAY TO NEW PHYSICS

NEUTRINO COSANOLOGY REDUX

Monday, May 7, 12

OUTLINE

> Effective number of neutrinos

> CMB and BBN data/theory predictions

> Right-handed neutrinos are necessary in...

> The best of all models: U(1) for everone

> Joint constraints on milliweak interactions (CMB-BBN-LHC)

> Summary and Conclusions

Work done in collaboration with Haim Goldberg PRL 108 (2012) 081805

EFFECTIVE NUMBER OF NEUTRINOS

Most straightforward variation of Standard Big-Bang Cosmology
 extra energy contributed by new relativistic particles "X"
 When X's don't share in energy released by e[±] annihilation
 convenient to account for extra contribution to SM energy density by normalizing it to that of an equivalent neutrino species

 $\rho_X \equiv \Delta N_{\nu} \rho_{\nu} = \frac{\ell}{8} \Delta N_{\nu} \rho_{\gamma} \qquad (\text{with } \Delta N_{\nu} = N_{\nu} - 3)$

steigman, schramm, and Gunn, PLB66 (1977) 202 > For each additional relativistic degree of freedom:

if $T_X = T_{\nu} \Rightarrow \begin{cases} \Delta N_{\nu} = 1 & \text{for } X = \text{any two-component fermion} \\ \Delta N_{\nu} = 4/7 & \text{for } X = \text{scalar} \end{cases}$

> If X's have decoupled even earlier and have failed to profit from heating when various other particle-antiparticle pairs annihilated (or unstable particles decayed)

contribution to $\Delta N_{
u}$ from each such particle will be $\begin{cases} <1 \\ <4/7 \end{cases}$

BBN

 Primordial ⁴He abundance is driven by decoupling of weak interaction (when neutrinos go out of equilibrium)

$$Y_p \propto e^{-(m_n - m_p)/T_{\text{dec}}}$$

> $T_{
m dec}$ determined via $\Gamma(T_{
m dec}) = H(T_{
m dec})$

$$T_{\rm dec}^5 \ (g/M_W)^4 M_{Pl} \sim \sqrt{N} \ T_{\rm dec}^2$$

(with $M_W \sim 100 \text{ GeV}$)

> For BBN F
$$T\sim 5~{
m MeV}~~ \clubsuit~~N\sim 10$$

> Y_p increases with N

> Observationally inferred primordial fractions of baryonic mass in ^He have been constantly favoring $N_{
u}^{
m eff}\lesssim 3$

Simha and Steigman, JCAP 06 (2008) 016

DYNAMICAL DARK MAATTER

> To produce an increase in $N_{
u}^{
m eff}$ at CMB epoch

 \blacktriangleright but retaining SM value $N_{
u}^{
m eff}$ for BBN

obvious possibility is production of relativistic particles (non-electromagnetically interacting) from decay of massive relic particles during/after BBN > This has been considered in:

- > Ichikawa, Kawasaki, Nakayama, Senami, and Takahashi, JCAP 0705 (2007) 008
- > Fischler and Meyers, PRD 83 (2011) 063520
- > Hasenkamp, PLB 707 (2012) 121
- > Menestrina and Scherrer, PRD 85 (2012) 047301
- > Hooper, Queiroz, and Gnedin, PRD 85 (2012) 063513

> Required delicate balance can be framed within recently proposed multi-component framework in which dark matter comprises vast ensemble of interacting fields with variety of different masses, mixings, and abundances Dienes and Thomas, PRD 85 (2012) 083523

HOWEVER ...

>Unexpectedly - recent determination of primordial 4He mass fraction

leads to $Y_p = 0.2565 \pm 0.0010(\text{stat}) \pm 0.0050(\text{syst})$

(2σ higher than value given by standard BBN)

For $\tau_n = 878 \pm 0.8 \text{ s} = N_{\nu}^{\text{eff}} = 3.80^{0.80}_{-0.70} (2\sigma)$ Izotov and Thuan, ApJ 710 (2010) L67 >4He observed primordial abundance has relative large systematic errors Aver, Olive, and Skillman, JCAP 1103 (2011) 043 $\succ Y_p$ is predicted with precision of $\sim 0.2\%$ D, 3He, and 7Li with precisions of roughly 5%, 4% and 8%RIT because of very precise measurement \blacktriangleright constraint on $N_{
u}^{
m eff}$ from D/H is competitive with that from Y_p >Setting aside 4He constraints and combining CMB with BBN theory and observed D/H $N_{\mu}^{\text{eff}} = 3.9 \pm 0.44 \ (1\sigma)$ Nollett and Holder, arXiv:1112.2683

HOW DO WE GET $\Delta N_{\nu}^{\text{eff}} \sim 1$ WITH RIGHT-HANDED NEUTRINOS? > Find model in which ν_R decouples during quark-hadron transition > From previous equation = need non-zero coupling to gauge fields with $M \sim \text{TeV}$ > D-brane candidate: $SU(3)_C \times SU(2)_L \times U(1)_B \times U(1)_L \times U(1)_{I_R}$ > $Y = \frac{1}{2}(B - L) + I_R$

> B-L is non-anomalous if $3 \nu_L s$ are accompanied by $3 \nu_R s$

> Matter fields consist of six sets of Weyl fermion-antifermion pairs (labeled by index $i = 1 \dots 6$)

> Gauging of B prevents fast proton decay

- mass via Green-Schwarz/Stuckelberg mechanism

- just 3 Dirac neutrinos with tinny Yukawas

PICTORIAL REPRESENTATION OF D-BRANE CONSTRUCT

Monday, May 7, 12

MODEL PARAMETERS

- > 3 couplings g_B, g_L, g_{I_R}
- > 3 Euler angles field rotation to coupling diagonal in Y fixes 2 angles
- > Orthogonal nature of rotation one constraint on couplings

$$\frac{1}{g_Y^2} = \left(\frac{1}{2g_L}\right)^2 + \left(\frac{1}{6g_B}\right)^2 + \left(\frac{1}{2g_{I_R}}\right)^2$$

> Baryon number coupling gB
fixed to be 1/√6 of SU(3) coupling at U(3) unification
→ determined elsewhere via RG running
> 2 remaining d.o.f. allow further rotation leaving
Z' to couple to B at 95%
Z'' to couple to B - L at 91%
-- only boson masses are free --

THE DRAMATIS PERSONAE

Index	Fields	Sector	$SU(3)_C \times SU(2)_L$	$U(1)_B$	$U(1)_L$	$U(1)_{I_R}$	$U(1)_Y$	g'	$g^{\prime\prime}$
1	U_R	$3 \rightarrow 1^*$	(3,1)	$\frac{1}{3}$	0	$\frac{1}{2}$	$\frac{2}{3}$	0.368	-0.028
2	D_R	$3 \rightarrow 1$	(3,1)	$\frac{1}{3}$	0	$-\frac{1}{2}$	$-\frac{1}{3}$	0.368	-0.209
3	L_L	$4 \rightarrow 2$	(1, 2)	0	1	0	$-\frac{1}{2}$	0.143	0.143
4	E_R	$4 \rightarrow 1$	(1, 1)	0	1	$-\frac{1}{2}$	-1	0.142	0.262
5	Q_L	$3 \rightarrow 2$	(3, 2)	$\frac{1}{3}$	0	0	$\frac{1}{6}$	0.368	-0.119
6	N_R	$4 \rightarrow 1^*$	(1, 1)	0	1	$\frac{1}{2}$	0	0.143	0.443
	Н	$2 \rightarrow 1$	(1, 2)	0	0	$\frac{1}{2}$	$\frac{1}{2}$	2.5×10^{-4}	0.090
$\mathcal{L}_{ ext{Yukawa}}$	$A_{a} = -Y$	${\cal A}_d^{ij}ar Q_iH$	$D_j - Y_u^{ij} \epsilon^{ab} \bar{Q}_{ia}$	$H_b^{\dagger} U_j$	$-Y_\ell^{ij}$.	$ar{L}_i H E_j$	$_{i}+Y_{ u}^{ij}$	$\epsilon^{ab} \bar{L}_{ia} H^{\dagger}_b$	$N_j + \text{h.c.}$
LAA, Antoniadis, Goldberg, Huang, Lüst, and Taylor, PRD 85 (2012) 086003									
onday, May 7, 12									

OBTAINING DECOUPLING TEAMPERATURE

> Adiabatic reheating of all particles except ν_R 's after decoupling gives relation

$$\Delta N_{\nu}^{\text{eff}} = 3 \left(\frac{N(T_{\text{end}})}{N(T_{\text{dec}})} \right)^{4/3}$$

> $T_{\rm end}$ = temperature at end of reheating phase

N(T) = r(T)(N_B + ⁷/₈N_F) → effective number of r.d.o.f. at T
 r(T) = 1 for lepton/photon and r(T) = s(T)/s_{SB} for qg plasma
 N(T_{doc}) = 37 r(T_{doc}) + 14.25

$$IV(Idec) = 0IV(Idec) + I$$

$$> N(T_{\rm end}) = 10.75$$

LATTICE QCD

> Lower T coincides with most rapid rise of entropy

> N(T) based on energy curve rather than entropy-similar

Monday, May 7, 12

QUARK-HADRON CROSSOVER TRANSITION > Excess r.d.o.f. within 1σ of central value of each if $0.46 < \Delta N_{\nu}^{\text{eff}} < 1.08$ $\rightarrow 23 < N(T_{\rm dec}) < 44$ $\rightarrow 0.24 < r(T_{\rm dec}) < 0.80$ > From lattice QCD study - this translates to a temperature range $175 \text{ MeV} < T_{\text{dec}} < 250 \text{ MeV}$ Bazavov et al., PRD 80 (2009) 014504 > Decoupling of ν_R occurs when ν_R m.f.p. \geq horizon size $\Rightarrow \Gamma^{\text{int}}(T_{\text{dec}}) = H(T_{\text{dec}})$ Thermal equilibrium \rightarrow int = scatt + ann Chemical equilibrium \rightarrow int = ann $H(T) = 1.66 \ \langle N(T) \rangle^{1/2} \ T^2 / M_{\rm Pl}$

- allowed regions of Z' and Z'' masses are defined in each case

SUMMARY AND CONCLUSIONS

- □ We developed dynamic explanation of recent hints that relativistic component of energy during BBN and CMB epochs is equivalent to about 1 extra Weyl neutrino
- \Box We work within (string base) $U(3)_C imes SU(2)_L imes U(1)_R imes U(1)_L$ gauge theory \square Model endowed with $3\,U(1)$ gauge symmetries coupled to $B,\ L,\ I_R$ \Box Rotation of gauge fields to basis exactly diagonal in Yand very nearly diagonal in B-L and Bfixes all mixing angles and gauge couplings \square Requiring B-L current be anomaly free implies existence of 3 right-handed Weyl neutrinos □ Task then reverts to explain why there are not 3 additional r.d.o.f. \Box We find that for certain ranges of M_B and M_{B-L} decoupling of ν_R 's occurs during course of quark-hadron crossover transition \blacktriangleright just so that they are only partially reheated compared to $\nu_L's$ Corresponding upper and Lower bounds on gauge field masses yield ranges to be probed at LHC