Structure of derivative interactions in N pseudo Nambu-Goldstone-Higgs doublet models

Pheno2012 (8 May 2012)

YAMAMOTO, Yasuhiro (U of Tokyo)

Collaborators: KIKUTA, Yohei and OKADA, Yasuhiro (Sokendai/KEK)

Based on arXiv:1111.2120 (published in PRD)

Higgs hunting (hunted?)

Higgs (probably) will be observed by LHC8

Composite NHDM

2

2

Composite NHDM

Derivative interactions of the Higgs

$$rac{c^H}{f^2}\partial^\mu(H^\dagger H)\partial_\mu(H^\dagger H),\ldots$$

Any interactions with the Higgs are changed.

Cross sections of VBF grow @ high energy region.

Derivative interactions of the Higgs

$$rac{c^H}{f^2}\partial^\mu(H^\dagger H)\partial_\mu(H^\dagger H),\ldots$$

Any interactions with the Higgs are changed.

$$\Rightarrow \frac{1}{2} \left(1 + c^H \frac{v^2}{f^2} \right) (\partial h)^2 \quad \Rightarrow h \to \frac{h}{\sqrt{\left(1 + c^H \frac{v^2}{f^2} \right)}}$$

Cross sections of VBF grow @ high energy region.

$$\Rightarrow \frac{c^{H}}{f^{2}}h(\partial h)\phi(\partial \phi)$$

$$\sigma \qquad Compositeness \\ SM \qquad E$$

Derivative interactions of the Higgs

$$rac{c^H}{f^2}\partial^\mu(H^\dagger H)\partial_\mu(H^\dagger H),\ldots$$

Any interactions with the Higgs are changed.

$$\Rightarrow \frac{1}{2} \left(1 + c^H \frac{v^2}{f^2} \right) (\partial h)^2 \quad \Rightarrow h \to \frac{h}{\sqrt{\left(1 + c^H \frac{v^2}{f^2} \right)}}$$

Cross sections of VBF grow @ high energy region.

Derivative int. and nonlinear rep.

'11 Y. Kikuta, Y. Okada and YY

Derivative int. and nonlinear rep.

'11 Y. Kikuta, Y. Okada and YY

Derivative int. and nonlinear rep.

'11 Y. Kikuta, Y. Okada and YY

Contents

Introduction

- C The case of one Higgs
- C How to extend it to the NHDM
- C Example with 2HDM
- Conclusion

The case of one Higgs

'09 Low, Rattazzi and Vichi

4 real scalars $\mathscr{L}_{\rm NG} = \frac{f^2}{2} \operatorname{tr} \left[(\partial e^{-i\pi/f}) (\partial e^{i\pi/f}) \right]$ $\Rightarrow \frac{1}{2}\partial h\partial h - \frac{1}{24f^2} \left(4f^{aci}f^{bdi} + f^{ace}f^{bde} \right) h^a h^b (\partial h^c)(\partial h^d) + \cdots$ $\rightarrow hT^{so(4)}\partial h \quad (T^{so(4)} \in \{T^{L\alpha}, T^{R\beta}\})$ $\Rightarrow a^{L}(hT^{L\alpha}\partial h)(hT^{L\alpha}\partial h) + a^{R}(hT^{R\beta}\partial h)(hT^{R\beta}\partial h)$ $+a^{Y}(hT^{R3}\partial h)(hT^{R3}\partial h)$ $=\frac{a^{L}+a^{K}}{4f^{2}}(O^{H}-4O^{r})+\frac{a^{\prime}}{4f^{2}}O^{T}$ $O^H = (\partial H^{\dagger} H) (\partial H^{\dagger} H)$ $O^T = (H^{\dagger} \overleftrightarrow{\partial} H) (H^{\dagger} \overleftrightarrow{\partial} H)$ Re Im $O^{r} = (H^{\dagger}H)(\partial H^{\dagger}\partial H)$ 3 General $O^{HT} = (\partial H^{\dagger} H) (H^{\dagger} \overleftrightarrow{\partial} H)$ Nonlinear

The case of one Higgs

'09 Low, Rattazzi and Vichi

4 real scalars $\mathscr{L}_{\rm NG} = \frac{f^2}{2} \operatorname{tr} \left[(\partial e^{-i\pi/f}) (\partial e^{i\pi/f}) \right]$ $\Rightarrow \frac{1}{2}\partial h\partial h - \frac{1}{24f^2} \left(4f^{aci}f^{bdi} + f^{ace}f^{bde} \right) h^a h^b (\partial h^c)(\partial h^d) + \cdots$ $\rightarrow hT^{so(4)}\partial h \quad (T^{so(4)} \in \{T^{L\alpha}, T^{R\beta}\})$ $\Rightarrow a^{L}(hT^{L\alpha}\partial h)(hT^{L\alpha}\partial h) + a^{R}(hT^{R\beta}\partial h)(hT^{R\beta}\partial h)$ $+a^{Y}(hT^{R3}\partial h)(hT^{R3}\partial h)$ $=\frac{a^{L}+a^{K}}{4f^{2}}(O^{H}-4O^{r})+\frac{a^{\prime}}{4f^{2}}O^{T}$ $O^H = (\partial H^{\dagger} H) (\partial H^{\dagger} H)$ $O^T = (H^{\dagger} \overleftrightarrow{\partial} H) (H^{\dagger} \overleftrightarrow{\partial} H)$ Re Im $O^{r} = (H^{\dagger}H)(\partial H^{\dagger}\partial H)$ General 3 $O^{HT} = (\partial H^{\dagger} H) (H^{\dagger} \overleftrightarrow{\partial} H)$ Nonlinear

The case of one Higgs

'09 Low, Rattazzi and Vichi

 $\mathscr{L}_{\rm NG} = \frac{f^2}{2} \operatorname{tr} \left[(\partial e^{-i\pi/f}) (\partial e^{i\pi/f}) \right]$ $= \frac{1}{2} \operatorname{tr} \left[(\partial e^{-i\pi/j})(\partial e^{i\pi/j}) \right] \qquad 4 \text{ real scalars}$ $\Rightarrow \frac{1}{2} \partial h \partial h - \frac{1}{24f^2} \left(4f^{aci}f^{bdi} + f^{ace}f^{bde} \right) h^a h^b (\partial h^c)(\partial h^d) + \cdots$ $\rightarrow hT^{so(4)}\partial h \quad (T^{so(4)} \in \{T^{L\alpha}, T^{R\beta}\})$ $\Rightarrow a^{L}(hT^{L\alpha}\partial h)(hT^{L\alpha}\partial h) + a^{R}(hT^{R\beta}\partial h)(hT^{R\beta}\partial h)$ $+a^{Y}(hT^{R3}\partial h)(hT^{R3}\partial h)$ $=\frac{a^{L}+a^{\kappa}}{4f^{2}}(O^{H}-4O^{r})+\frac{a^{I}}{4f^{2}}O^{T}$ $O^H = (\partial H^{\dagger} H)(\partial H^{\dagger} H)$ $O^T = (H^{\dagger} \overleftrightarrow{\partial} H) (H^{\dagger} \overleftrightarrow{\partial} H)$ Re Im $O^r = (H^{\dagger}H)(\partial H^{\dagger}\partial H)$ General 3 $O^{HT} = (\partial H^{\dagger} H) (H^{\dagger} \overleftrightarrow{\partial} H)$ Nonlinear

The case of *N* Higgs

$$\mathcal{L}_{NG} = \frac{f^2}{2} \operatorname{tr} \left[(\partial e^{-i\pi/f}) (\partial e^{i\pi/f}) \right]$$

$$\Rightarrow \frac{1}{2} \partial h \partial h - \frac{1}{24f^2} \left(4f^{aci} f^{bdi} + f^{ace} f^{bde} \right) h^a h^b (\partial h^c) (\partial h^d) + \cdots \right]$$

$$\to hT^{so(4N)} \partial h \quad (T^{so(4N)} \in \{T_{(i,j)}^{L\alpha}, T_{(i,j)}^{R\beta}, S_{(i,j)}^{\alpha\beta}, U_{(i,j)}\})$$

$$SU(2)_L \times SU(2)_R : (\mathbf{3}, \mathbf{1}), (\mathbf{1}, \mathbf{3}), (\mathbf{3}, \mathbf{3}), (\mathbf{1}, \mathbf{1})$$

$$O_{ijkl}^H = (\partial H_i^{\dagger} H_j) (\partial H_k^{\dagger} H_l) \quad O_{ijkl}^r = (H_i^{\dagger} H_j) (\partial H_k^{\dagger} \partial H_l)$$

$$O_{ijkl}^{TT} = (H_i^{\dagger} \partial H_j) (H_k^{\dagger} \partial H_l) \quad O_{ijkl}^{HT} = (\partial H_i^{\dagger} H_j) (H_k^{\dagger} \partial H_l)$$

$$\frac{Re}{O_{ijkl}^{TT}} = (H_i^{\dagger} \partial H_j) (H_k^{\dagger} \partial H_l) \quad (1/2)N^2(3N^2 - 1)$$

$$Nonlinear (1/2)N^2(N^2 + 3) \quad (1/2)N^2(N^2 - 1)$$

The case of *N* Higgs

O(4) symmetric Lagrangian for 2HDM

$$\begin{aligned} \mathscr{L}_{2\text{HDM}} &= \frac{c_{1111}^{H}}{2f^{2}} O_{1111}^{H} + \frac{c_{1112}^{H}}{f^{2}} (O_{1112}^{H} + O_{1121}^{H}) + \frac{c_{1122}^{H}}{f^{2}} O_{1122}^{H} \\ &+ \frac{c_{1221}^{H}}{f^{2}} O_{1221}^{H} + \frac{c_{1212}^{H}}{2f^{2}} (O_{1212}^{H} + O_{2121}^{H}) \\ &+ \frac{c_{2221}^{H}}{f^{2}} (O_{2212}^{H} + O_{2221}^{H}) + \frac{c_{2222}^{H}}{2f^{2}} O_{2222}^{H} \\ &+ \frac{c_{1122}^{T}}{f^{2}} O_{1122}^{T} + \frac{c_{1221}^{T}}{f^{2}} O_{1221}^{T} + \frac{c_{1212}^{T}}{2f^{2}} (O_{1212}^{H} + O_{2121}^{T}) \end{aligned}$$

where $c_{1122}^T = -(c_{1221}^T + c_{1212}^T) = -\frac{1}{3}(c_{1221}^H - c_{1212}^H)$

 α : the mixing angle of CP-even Higgses $\beta = v_1/v_2$

Weakly or strongly? $c^{H,T}/f^2 = 1/(750 \text{GeV})^2$

$$\sigma(W_L^+W_L^- \to W_L^+W_L^-)_{
m SILH} \sim 10^{3\sim5} \,
m fb$$

 $\sigma(W^+W^- \to hh)_{
m SM} \sim 5 imes 10^4 \,
m fb$

$$\sigma(W_L^+W_L^- o W_L^+W_L^-)_{
m SILH} \sim 10^{3\sim5} \,
m fb$$

 $\sigma(W^+W^- o hh)_{
m SM} \sim 5 imes 10^4 \,
m fb$

One Higgs or many Higgses?

9

 $\sigma(W_L^+W_L^- o W_L^+W_L^-)_{
m SILH} \sim 10^{3\sim5} \,
m fb$ $\sigma(W^+W^- o hh)_{
m SM} \sim 5 imes 10^4 \,
m fb$

One Higgs or many Higgses?

$$\frac{\sigma(W_L^+ W_L^- \to hh)}{\sigma(W_L^+ W_L^- \to W_L^+ W_L^-)}_{\text{SILH}}$$

9

 $\sigma(W_L^+W_L^- o W_L^+W_L^-)_{
m SILH} \sim 10^{3\sim5} \,
m fb$ $\sigma(W^+W^- o hh)_{
m SM} \sim 5 imes 10^4 \,
m fb$

Conclusion

