The Z' contribution in the B₅ meson mixing and the recent LHCb result

Seodong Shin

Seoul National University, Seoul, Korea Parallel talk, pheno 2012, 7 May 2012

Work in progress with R. Dermisek, H.D. Kim, S.G. Kim Phys. Rev. D83, 036003 (2010) with Jihn E. Kim and M.S. Seo

Outline

Solution Like-sign dimuon charge asymmetry at the DO

Second Experimental constraints including LHCb 1fb⁻¹ result
– Mass difference ΔM_s

- Decay width difference $\Delta\Gamma_s$
 - Phase in the indirect CP asymmetry $\phi_s^{J/\psi\,\phi}$
 - Model dependent bounds : b \rightarrow svv, B \rightarrow J/ ψ Ks
- The upper limit of the coupling in the Z' model
- Conclusions

Like-sign dimuon charge asymmetry at DO

Asymmetry in the number N⁺⁺ and N⁻⁻ N⁺⁺ : # of events $\mu^+\mu^+$ N⁻⁻ : # of events $\mu^-\mu^-$

from the semi-leptonic decays of Bd,s meson

$$A_{s\ell}^{b} = \frac{N^{++} - N^{--}}{N^{++} + N^{--}}$$

Ase $\neq 0: \mathcal{O}$ in the mixing

First observation 2010 at 6.1fb^{-1} D0 $A_{s\ell}^b = -(9.52 \pm 2.51 \pm 1.46) \times 10^{-3}$ **3.20 deviation from the SM value** $(A_{s\ell}^b)^{\text{SM}} = (-2.8^{+0.5}_{-0.6}) \times 10^{-4}$

Second observation 2011 at 9.0fb^{-1} DO $A^b_{s\ell} = -(7.87 \pm 1.72 (\text{stat.}) \pm 0.93 (\text{syst.})) \times 10^{-3}$

 3.9σ deviation (error reduced)

Need additional CP violation source in Bd,s mixing

Obtain $A_{s\ell}^b$ from B_d mixing + B_s mixing

$$a_{s\ell}^{d} \equiv \frac{\Gamma(\overline{B}_{d} \to \mu^{+}X) - \Gamma(B_{d} \to \mu^{-}X)}{\Gamma(\overline{B}_{d} \to \mu^{+}X) + \Gamma(B_{d} \to \mu^{-}X)}$$
$$a_{s\ell}^{s} \equiv \frac{\Gamma(\overline{B}_{s} \to \mu^{+}X) - \Gamma(B_{s} \to \mu^{-}X)}{\Gamma(\overline{B}_{s} \to \mu^{+}X) + \Gamma(B_{s} \to \mu^{-}X)}$$

At 1.96 TeV

2010 result $A^b_{s\ell} = (0.506 \pm 0.043)a^d_{s\ell} + (0.494 \pm 0.043)a^s_{s\ell}$

2011 result

 $A_{s\ell}^b = (0.594 \pm 0.043)a_{s\ell}^d + (0.406 \pm 0.043)a_{s\ell}^s$

2011 result of 3.9σ

IP > 120µm : reduce background (less data)

separately reading the asymm. $a_{s\ell}^s = -(18.1 \pm 10.6) \times 10^{-3}$ **1.70** $(a_{s\ell}^s)^{\text{SM}} = (1.9 \pm 0.3) \times 10^{-5}$

 $a^d_{s\ell} = -(1.2 \pm 5.2) \times 10^{-3}$ < 10

 $(a_{s\ell}^d)^{\rm SM} = -(4.1 \pm 0.6) \times 10^{-4}$

Bs,d - Bs,d mixing

$$i\frac{\mathrm{d}}{\mathrm{d}t}\left(\begin{array}{c}|B^{0}\rangle\\|\overline{B}^{0}\rangle\end{array}\right) = \left(M - i\frac{\Gamma}{2}\right)\left(\begin{array}{c}|B^{0}\rangle\\|\overline{B}^{0}\rangle\end{array}\right)$$

M and Γ : 2×2 hermitian mass and decay matrices Mixing via off-shell (dispersive) intermediate states and on-shell (absorptive) intermediate states

$$\Delta M_q = 2|M_{12}^q| \qquad \Delta \Gamma_q = 2|\Gamma_{12}^q|\cos\phi_q$$

$$\phi_q = \text{Arg.} \left(-\frac{M_{12}^q}{\Gamma_{12}^q}\right) \qquad \phi_d^{\text{SM}} = (-7.5 \pm 2.4) \times 10^{-2}$$

$$\phi_s^{\text{SM}} = (3.8 \pm 1.1) \times 10^{-3}$$

 $a_{s\ell}^q = \operatorname{Im} \frac{\Gamma_{12}^q}{M_{12}^q} = \frac{|\Gamma_{12}^q|}{|M_{12}^q|} \sin \phi_q = \frac{\Delta \Gamma_q}{\Delta M_q} \tan \phi_q$

 $\Delta M_s = 17.725 \pm 0.041 (\text{stat.}) \pm 0.026 (\text{syst.}) \text{ ps}^{-1}$ $(\Delta M_s)^{\text{SM}} = (17.3 \pm 2.6) \text{ ps}^{-1}$

If $\Gamma_{12}^s = \Gamma_{12}^{s, \text{SM}}$ only even with $\sin \phi_s = -1$ Impossible to obtain the central value of $a_{s\ell}^s$ NP contribution to Γ_{12}^s & No large to Γ_{B_s} For convenience, let's define $\frac{\Gamma_{12}^{q \text{ NP}}}{\Gamma_{12}^{q \text{ SM}}} \equiv \tilde{h}_q e^{i2\tilde{\sigma}_q} , \quad \frac{M_{12}^{q \text{ NP}}}{M_{12}^{q \text{ SM}}} \equiv h_q e^{i2\sigma_q}$

\odot Sizable contribution to Γ_{12}^{s}

or

 Light new particles which Bs can decay into (one of which < mBs)

② New interactions to the light SM particles (without new \mathbb{Z}_2 parity)

Otherwise, the new contribution : loop suppressed

◊ Very small contribution to ΓB.
 ① Constrained by the new particle mass bound
 ② Constrained by the Br. (Bs → particles)

Br. $(\bar{B}_s \to \tau^+ \tau^-) < 5\%$ Not so severe constraints Br. $(\bar{B} \to X_s \tau^+ \tau^-) < 5\%$ $\mathcal{O}(1)\tilde{h}_s$

If $(bs)(\bar{\tau}\tau)_{V,A}$ is the only nonzero NP interaction

safe from $b \rightarrow s\gamma$

Bauer & Dunn, Phys. Lett. B696, 362 (2011) Bobeth & Haisch, arXiv:1109.1826

My work with Jihn E. Kim and M.-S. Seo, Phys. Rev. D83, 036003 (2010)

Alok, Baek, London, JHEP 07, 111 (2011)

Interference of NP with the SM through charm

because $\Gamma_{12}^{s} \propto NP$ coupling linearly small to avoid ex. constraints

My work in progress with R. Dermisek, H.D. Kim, S.G. Kim

Alok, Baek, London, JHEP 07, 111 (2011)

The analysis in this work

Analyze the various recent experimental results (e.g., LHCb 1fb⁻¹) which can constrain the NP models explaining the dimuon charge asymmetry

See what extent the NP parameter can be constrained by them : Z' model

Scenario with Z' to tau pair

Scenario with Z' to charm quark pair

When the sizable NP in the B_s mixing

Experimental constraints

 \odot Mass difference ΔM_s

 \odot Decay width difference $\Delta\Gamma_s$

@ 2βs

Model dependent experimental constraints
 $b \rightarrow svv$, B → J/ψKs

Z' model to analyze the possible parameter region

$$Z': 6 \text{ real free parameters}$$

$$g_{sb}^{L}: Z'\bar{s}_{L}b_{L} \quad g_{sb}^{R}: Z'\bar{s}_{R}b_{R} \quad g_{\tau\tau}^{L}: Z'\bar{\tau}_{L}\tau_{L} \quad g_{\tau\tau}^{R}: Z'\bar{\tau}_{R}\tau_{R}$$

$$complex \text{ off-diagonal} \qquad \text{ or charm}$$

$$L(R) \quad L(R) \quad i0$$

So Every experimental result : $(g_{\psi\chi}^{L,R}/g_1)(M_Z/M_{Z'})$ $g_1 = g/\cos\theta_W$ g: SU(2)

 $g_{sb}^{L(R)} \equiv |g_{sb}^{L(R)}|e^{i\sigma_{L(R)}}$

To see the magnitude of coupling, we can fix $M_{z'}$ For simplicity, analyze the case when $M_{z'} \approx M_z$

 A_{FB}^{b} Phys. Rev. D84, 035006 (2011) by Dermisek, Kim, Raval

Mass difference ΔM_s

$\Delta M_s = 17.725 \pm 0.041 (\text{stat.}) \pm 0.026 (\text{syst.}) \text{ ps}^{-1}$

No significant deviation

 $(\Delta M_s)^{\rm SM} = (17.3 \pm 2.6) \text{ ps}^{-1}$

In terms of general parameters

NP contribution is highly constrained!

In terms of Z' model parameters

$\Delta \Gamma_{s} \& \phi_{s}^{J/\psi\phi} \text{ from } B_{s} \to J/\psi\phi$

Previous published result 0.37 fb⁻¹ This new preliminary result 1.0 fb⁻¹ arXiv:1112.3183 0.2 ΔΓ_s [ps⁻¹] LHCb Preliminary Conf. Levels 0.18E LHCb ΔΓ_s [ps⁻¹ 0.2best fit \$ 0.16E 68% CL 90% CL 0.14E 95% C.L 0.1 95% CL 0.12 Standard Model 0.1E 0.08E 0.06 -0.1 0.04E -0.2 0.02E 0 2 0 ϕ^{4}_{ψ} -0.2 -0.4 0.2 0.4 o^{//}[**frad]** 0 $\Gamma_s = 0.6580 \pm 0.0054(stat.) \pm 0.0066(syst.) ps^{-1}$ $\Gamma_{\rm s} = 0.657 \pm 0.009 (\text{stat.}) \pm 0.008 (\text{syst.}) \text{ ps}^{-1}$ $\Delta \Gamma_{\rm s} = 0.116 \pm 0.018 (\text{stat.}) \pm 0.006 (\text{syst.})$ $\Delta\Gamma_s = 0.123 \pm 0.029$ (stat.) ± 0.011 (syst.) ps⁻¹ ps-1 $\phi_s^{J/\psi\phi} = 0.151 \pm 0.18$ (stat.) ± 0.06 (syst.) $\phi_s^{J/\psi\phi} = -0.001 \pm 0.101(\text{stat.}) \pm 0.027(\text{syst.})$ rad. rad.

Approach to the SM prediction

With new phase contribution in $B_s \rightarrow J/\psi\phi$ (e.g., z'cc)

additional contribution in $\phi_s^{J/\psi\,\phi}$

In the scenario with Z'cc

Z'cc is (almost) axial vector-like

or the coupling is very small $|g_{sb}^R g_{cc}^{L,R} \sin \theta_R| < O(10^{-5})$ $|g_{sb}^L g_{cc}^{L,R} \sin \theta_L| < 2 \times 10^{-4}$

> When the contribution from the mixing is small : hs << 1

when hs << 1

No constraint from ΔM_s

less enhancement : about 100 times the SM (1σ : about 395 times central : 953 times)

1109.1826, Bobeth & Haisch

 $\Delta \Gamma$ s

marginally consistent

Model dependent experimental constraints (1) NP with τ_{\perp} is constrained by $b \rightarrow svv$

$$\theta_L = \theta_R = \pi/4$$

 $\theta_{L,R} = \operatorname{Arg.}(g_{sb}^{L,R})$

 $\left|g_{\tau\tau}^L g_{sb}\right| < 10^{-3}$

Br. $(B \to K^* \nu \bar{\nu}) < 8 \times 10^{-5}$ Br. $(B \to K \nu \bar{\nu}) < 1.3 \times 10^{-5}$ Br. $(B \to X_s \nu \bar{\nu}) < 6.4 \times 10^{-4}$

For the scenario with $Z'\tau^+\tau^-$

Numbers : $-a_{s\ell}^s/(a_{s\ell}^s)^{SM}$

 1σ : about 395 times the SM central : 953 times the SM

On the asymptotic line $|g_{sb}^R| \approx 5.1420416 \ |g_{sb}^L|$ $\theta_L = \theta_R = \pi/4$

Model dependent experimental constraints (2) NP with c is constrained by $B \rightarrow J/\psi K_s$ sin2 β

 $\sin 2\beta^{\rm meas} = 0.668 \pm 0.028$

 $\sin(2\beta)^{\text{fit}} = 0.731 \pm 0.038$

In the scenario with Z'cc

 $|(g_{cc}^{L} + g_{cc}^{R})(g_{sb}^{L} + g_{sb}^{R})\sin\varphi| < 2.0 \times 10^{-4}$

Another approach in $sin 2\beta$

 $|V_{ub}|_{\text{excl}} = (31.2 \pm 2.6) \times 10^{-4}$ |V_{ub}|_{\text{incl}} = (43.4 \pm 1.6^{+1.5}_{-2.2}) \times 10^{-4} large difference

Remove from the input

instead, use

$$\epsilon_K, \Delta M_s / \Delta M_d,$$

 $\gamma, \operatorname{Br}(B \to \tau \nu)$

Z'cc

 $\sin(2\beta)^{\text{fit}} = 0.867 \pm 0.048$

more than 3σ

Lunghi & Soni, 1104.2117, 1010.6069

 $1.8 \times 10^{-4} < |(g_{cc}^L + g_{cc}^R)(g_{sb}^L + g_{sb}^R)\sin\varphi| < 6.0 \times 10^{-4}$

Z' scenario with au couplings

What extent Z'cc is axial-vector like

Discrepancy from the axial vector interaction $\delta_c \equiv (g_{cc}^L + g_{cc}^R)/g_{cc}^R$ The case $|g_{sb}^L| \approx 5.1420416 |g_{sb}^R|$

> Fine tuning from ¶ ⊿Ms is loosen

Consistent region : at least $|g_{cc}g_{sb}| \sim \mathcal{O}(10^{-3}) \ \delta_c < 5 imes 10^{-2}$

Z' scenario with *c-quark* couplings

Consistent $|g_{cc}g_{sb}| \sim \mathcal{O}(10^{-3})$

Solution Less Fine-tuning from ΔM_s compared to the τ case

To satisfy the recent LHCb result of 1fb⁻¹,
 Z'cc interaction is almost axial vector-like
 sizable g^L_{cc} sizable g^L_{ss}

Cannot easily avoid the constraints (fine tuning + α) $B_d^0 - \bar{B}_d^0$, $K^0 - \bar{K}^0$, $D^0 - \bar{D}^0$, π production, \cdots g_{bd}^L , g_{ds}^L , g_{uc}^L , g_{uu}^L , g_{dd}^L , \cdots

Conclusions

 The like-sign dimuon charge asymmetry
 : observed at the DO since 2010 and now has about 3.9σ deviation

The sizable CP violating effect in B_{d,s} mixing
 (Γ₁₂ is large but Γ_{Bd,s} must be small)

Obtain the limit of the Z' parameters from the experimental bounds.

Conclusions

 New off-diagonal interaction Z'bs provides the enough contribution with Z'ττ coupling or Z'cc coupling.

However, not free from the fine tuning from various experiments.

 \odot Δ Ms & $\phi_s^{J/\psi \phi}$

For Z'cc : almost axial vector-like (model construction very hard)

NP in the Bd mixing ??
 : need only about 10 times the SM although the experimental bounds strong

Thank you!!

Pheno 2012 Symposium LHC lights the way to new physics

.....

University of Pittsburgh

PITTsburgh Particle physics, Astrophysics and Cosmology Center

May 7-9, 2012

Back-up slides from now on

2010

2011

$$A_{\rm sl}^{b} = \frac{f_{d}Z_{d}a_{\rm sl}^{d} + f_{s}Z_{s}a_{\rm sl}^{s}}{f_{d}Z_{d} + f_{s}Z_{s}},\tag{A9}$$

where

$$Z_q \equiv \frac{1}{1 - y_q^2} - \frac{1}{1 + x_q^2},\tag{A10}$$

$$y_q \equiv \frac{\Delta \Gamma_q}{2\Gamma_q},\tag{A11}$$

$$x_q = \frac{\Delta M_q}{\Gamma_q},\tag{A12}$$

with q = d, s. The quantities f_d and f_s are the production fractions for $\bar{b} \rightarrow B_d^0$ and $\bar{b} \rightarrow B_s^0$, respectively. These fractions have been measured for $p\bar{p}$ collisions at the Tevatron [2]:

$$f_d = 0.323 \pm 0.037, \qquad f_s = 0.118 \pm 0.015, \quad (A13)$$

$$A_{\rm sl}^b = C_d a_{\rm sl}^d + C_s a_{\rm sl}^s, \qquad (2)$$

with $a_{\rm sl}^q = \frac{\Delta \Gamma_q}{\Delta M_q} \tan \phi_q, \qquad (3)$

where ϕ_q is a *CP*-violating phase, and ΔM_q and $\Delta \Gamma_q$ are the mass and width differences between the eigenstates of the propagation matrices of the neutral B_q^0 mesons. The coefficients C_d and C_s depend on the mean mixing probabilities and the production fractions of B^0 and B_s^0 mesons. We use the production fractions measured at LEP as averaged by the Heavy Flavor Averaging Group (HFAG) [3] and obtain

$$C_d = 0.594 \pm 0.022,$$
 $C_s = 0.406 \pm 0.022.$ (4)

The mean mixing probability measured by the CDF Collaboration recently [4] is consistent with the LEP value, which supports this choice of parameters. Using the standard model (SM) prediction for a_{sl}^d and a_{sl}^s [5], we find

$$A_{\rm sl}^b({\rm SM}) = (-0.028^{+0.005}_{-0.006})\%,$$

(5)

All other parameters in (A9) are also taken from Ref. [2]:

$$x_d = 0.774 \pm 0.008, \quad y_d = 0,$$

 $x_s = 26.2 \pm 0.5, \quad y_s = 0.046 \pm 0.027.$ (A14)

Substituting these values in Eq. (A9), we obtain

$$A_{\rm sl}^b = (0.506 \pm 0.043)a_{\rm sl}^d + (0.494 \pm 0.043)a_{\rm sl}^s.$$
 (A15)

Using the values of a_{sl}^d , a_{sl}^s from Ref. [1],

$$a_{\rm sl}^d({\rm SM}) = (-4.8^{+1.0}_{-1.2}) \times 10^{-4}$$

 $a_{\rm sl}^s({\rm SM}) = (2.1 \pm 0.6) \times 10^{-5},$ (A16)

the predicted value of A_{sl}^b in the standard model is

$$A_{\rm sl}^b({\rm SM}) = (-2.3^{+0.5}_{-0.6}) \times 10^{-4}.$$
 (A17)

The current experimental values of the two semileptonic asymmetries are $a_{sl}^d = -0.0047 \pm 0.0046$ [24] and $a_{sl}^s = -0.0017 \pm 0.0091$ [25].

 $f_d = 0.397$ and $f_s = 0.112$

2010 result of 3.2σ

CDF result of 1.6 fb⁻¹ $(a_{s\ell}^s)_{ave} = -(12.7 \pm 5.0) \times 10^{-3}$ 2.50 from $(a_{s\ell}^s)^{SM} = (1.9 \pm 0.3) \times 10^{-5}$

2011 result of 3.9σ

The deviation increased and the most interesting change in the 2011 data is......

2011 result of 3.9σ

Background reduction muon impact parameter cut

Charged Hadron produced at the primary vertex $(\stackrel{}{K} \stackrel{}{} \rightarrow \mu^+ & \stackrel{}{K} \stackrel{}{} \rightarrow \mu^-, ...)$ Difference in the interaction with the detector material

Long-lived charged mother particles can mimic the track of muons \rightarrow small IP

Compare with the computational result

Muon IP difference in B_d^0, B_s^0

$\Delta M_s \gg \Delta M_d$ Bs mixing time << Bd mixing time

Without new contribution to Γ_{12}^{s} outside 1σ

or

Usual MSSM : M12 only

FIG. 4. The $B_s - \overline{B}_s$ mixing through the gluino mass: (a) A detail of one mass mixing and (b) all mass mixings without details. The diagram with the charged gauginos which is a mere supersymmetrization of the SM FCNC is also possible, but with smaller gauge couplings. (a) is drawn again in (b). The red bullet in (b) contains a CP phase whose origin is shown in (a). The A terms are colored red, and the box diagram of (a) has an unremovable CP phase.

Low tanß Chargino and stop mass CP violation source : CKM

or DP Suppressed by exp.

Buras et al. hep-ph/0207241 PLB

$\Delta M_s = 17.77 \pm 0.10 (\text{stat.}) \pm 0.07 (\text{sys.}) \text{ ps}^{-1}$ = (11.7 ± 0.07 ± 0.05) × 10⁻¹² GeV CDF measurement 1.6 fb⁻¹

LHCb-CONF-2011-050 November 28, 2011

Measurement of Δm_s in the decay $B_s^0 \rightarrow D_s^- (K^+ K^- \pi^-) \pi^+$ using opposite-side and same-side flavour tagging algorithms

The LHCb Collaboration

Abstract

The $B_s^0 - \overline{B}_s^0$ oscillation frequency Δm_s is measured on a data sample of 340 pb⁻¹ from the LHCb physics run in 2011. A total of 9189 B_s^0 signal candidates are reconstructed in the $B_s^0 \rightarrow D_s^- \pi^+$ decay, with an average decay time resolution of 45 fs. We established an oscillation signal using for the first time in LHCb the same-side kaon tagging and measured its effective tagging efficiency of $\epsilon_{\rm eff,SSKT} = 1.3 \pm 0.4 \%$. The most precise value of the oscillation frequency is found to be $\Delta m_s = 17.725 \pm 0.041$ (stat) ± 0.026 (syst) ps⁻¹ using a combination of opposite-side and same-side flavour tagging algorithms. LHCb

FIG. 9. The tree level $B_s - \overline{B}_s$ mixing via the new Z' gauge boson.

> Tree level mixing : M₁₂

$$h_{s} = \frac{3.858 \times 10^{5}}{g_{1}^{2}} \times \text{Abs.} \left[(g_{sb}^{L})^{2} + (g_{sb}^{R})^{2} - 6 \eta^{-3/23} g_{sb}^{L} g_{sb}^{R} \left(\frac{1}{4} + \frac{1}{6} \left(\frac{m_{B_{s}}}{m_{b} + m_{s}} \right)^{2} \right) + 4 \left(\eta^{-3/23} - \eta^{-30/23} \right) g_{sb}^{L} g_{sb}^{R} \left(\frac{1}{24} + \frac{1}{4} \left(\frac{m_{B_{s}}}{m_{b} + m_{s}} \right)^{2} \right) \right]$$

 $\eta = \alpha_s(M_{Z'}) / \alpha_s(m_b)$

If one of $g_{sb} = 0$ The diagonal couplings should be large $\Gamma_{12} : (g_{sb}^{L,R} g_{\tau\tau}^{L,R}), (g_{sb}^{L,R} g_{cc}^{L,R})$

We need both of $g_{sb}^L \& g_{sb}^R$

$\phi_s^{J/\psi\phi} = -0.001 \pm 0.101 (\text{stat.}) \pm 0.027 (\text{syst.})$

 $(\phi_s^{J/\psi \phi})_{\rm SM} = -2\beta_s^{\rm SM} = -0.036 \pm 0.002$

Provides very strong constraint in the NP

Sign fixed : positive

$\Delta \Gamma_s = 0.116 \pm 0.018 (\text{stat.}) \pm 0.006 (\text{syst.}) \text{ ps}^{-1}$

 $(\Delta \Gamma_s)^{\rm SM} = (0.087 \pm 0.021)$

$$\begin{split} \frac{\Delta\Gamma_{s}}{(\Delta\Gamma_{s})^{\mathrm{SM}}} &= \frac{1}{\sqrt{1+h_{s}^{2}+2h_{s}\cos 2\sigma_{s}}} \text{ near to 1} \\ &\times \left[(1+h_{s}\cos 2\sigma_{s})(1+\tilde{h}_{s}\cos 2\tilde{\sigma}_{s}) + h_{s}\tilde{h}_{s}\sin 2\sigma_{s}\sin 2\tilde{\sigma}_{s} \right] \\ &- \tan \phi_{s}^{\mathrm{SM}} \left(h_{s}\sin 2\sigma_{s}(1+\tilde{h}_{s}\cos 2\tilde{\sigma}_{s}) - \tilde{h}_{s}\sin 2\tilde{\sigma}_{s}(1+h_{s}\cos 2\sigma_{s}) \right) \\ &= -a_{s\ell}^{q}/(a_{s\ell}^{q})^{\mathrm{SM}} = \underbrace{1+h_{q}^{2}+2h_{q}\cos 2\sigma_{q}}^{\mathrm{near to 1}} \quad \text{determines the asymm} \\ &\times \left[\left\{ \tilde{h}_{q}\sin 2\tilde{\sigma}_{q}(1+h_{q}\cos 2\sigma_{q}) - h_{q}\sin 2\sigma_{q}(1+\tilde{h}_{q}\cos 2\tilde{\sigma}_{q}) \right\} \cot \phi_{q}^{\mathrm{SH}} \\ &- \left\{ (1+\tilde{h}_{q}\cos 2\tilde{\sigma}_{q})(1+h_{q}\cos 2\sigma_{q}) + h_{q}\tilde{h}_{q}\sin 2\sigma_{q}\sin 2\tilde{\sigma}_{q} \right\} \right] \end{split}$$

Model dependent experimental constraints (2) $g_{bb} \neq 0$ or $g_{ss} \neq 0$ is constrained by $b \rightarrow s\gamma$

Br. $(B \to X_s \gamma)_{exp} = (3.55 \pm 0.24 \pm 0.09) \times 10^{-4}$ Br. $(B \to X_s \gamma)_{SM} = (3.15 \pm 0.23) \times 10^{-4}$ Natural value $|g_{bb}g_{sb}| < \mathcal{O}(10^{-2})$

FIG. 3. The limit of the couplings from the experimental bounds of 90% C.L (Blue) and 95% C.L. (Cyan, Dashed boundary line) of $B \to X_s \gamma$ for fine-tuned cases (a) $\theta_L = \theta_R = \pi/4$ and (b) $\theta_L = \theta_R = 3\pi/4$.

(2) τ V,A is constrained by b \rightarrow sll

Bobeth & Haisch, arXiv:1109.1826

$g_{sb}^L \approx 0.1944753 g_{sb}^R$

 $\delta_c < 10^{-2}$

Fine tuning is worse

Off-diagonal couplings : $< O(10^{-4})$

For D mesons : Giudice, Isidori, Paradici, 1201.6204

 $g_{\tau\tau}$: Λ_{UV} 10 TeV g_{cc} : Λ_{UV} 100 TeV

Generic bounds without flavor symmetry

Z' scenario with au couplings

Consistent $|g_{sb}g^R_{\tau\tau}| \sim \mathcal{O}(10^{-2})$

So Fine-tuning from ΔM_s (Without fine-tuning, $|g^R_{\tau\tau}| > 1$)

o $|g^{L}\tau\tau| << |g^{R}\tau\tau|$ from $b \rightarrow svv$

@ hs << 1 to satisfy ΔM_s & $\phi_s^{J/\psi\,\phi}$ constraint