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Outline:
Three Parts

|. Theory Input -- from models to data
ll. Experimental Input -- from data to models
lll. Application/Results -- Compositeness and SUSY



Part One: Theory Input



A simplified theory input:“The non-panacean Higgs”

The ‘substandard model’ has to be augmented (for renorm’ability):

Three massive vectors, triplet of approximate SU(2)
U = expl|2it,mq(x)/v]
— LUR'

described at leading order:
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Assumption: the (custodial singlet) ‘Higgs’ might not be
single-handedly responsible for unitarization, etc.
OTHER NEW PHYSICS enters at potentially low scales

Case studies to come: (minimal) compositeness and SUSY
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FOCUSING ON THESE GUYS

Case studies to come: (minimal) compositeness and SUSY



A simplified theory input:“The non-panacean Higgs”

The ‘substandard model’ has to be augmented (for renorm’ability):
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|. Naturalness ~ Couplings’ deviation from SM
ll. Consistency check if other low-mass EVVSB states appear

lll. Theorists need tools to construct (approximate) exclusions



Part Two: Experimental Input
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What do we know (thanks to the LHC)?

Given background, signal, and observed events: construct likelihood:
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What do we know (thanks to the LHC)?

Answer:
We know the amount by which we can rescale
production/branching -- all in the same proportions --
and still be consistent with observation.

Said another way, we know what’s going on in a one-
dimensional parameter space: adequate in some cases,
but in several others we'd like to push this information

a bit further...

How do we proceed?
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... that we need to determine for ourselves at this point
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Moving on: Comparison to RECONSTRUCTED Likelihood
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Moving on: Comparison to RECONSTRUCTED Likelihood

2
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Moving on: Comparison to RECONSTRUCTED Likelihood

%
1 {1.96 X
P(u) =N x exp |—= ( o +5>
[l

Solve for remaining parameter using observed exclusion limit:
~(95%)

obs

0.95 = /O dp P(u)

RECAP:
o Expected exclusion tells us about s/b
o Observed tells us delta, completes determination of (AL) likelihood

o Good news: can be done over whole mass range, not just at ‘peaks’
where information on best fit is available
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How well does this method do!?

One possible check: the total combination

o ACCURATE WITHIN 10% BELOW 300 GeV;
within 20% at high masses

o Compare to ‘“naive graphical analysis” (adding in
inverse quadrature) which errs by 40% or more

o Looks good: let’s apply the method and run with it



Part Three: Application

3A. Composite Higgs
with flavor-universal Yukawa rescalings
(cf. SO(5)/SO(4) with fermions in spinor or fundamental)
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Status report for the Higgs at 125(?)(!)
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ATLAS seems to disfavor the SM:
how should we take this!?
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Part Three: Application

3B. SUSY
in particular its minimal implementation



First: U and D Yukawas differ (Type-ll 2HDM)

Conventions:

Hy =212, Hy =2_1/2, (ReH,)/(ReHy) = tan 3
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First: U and D Yukawas differ (Type-ll 2HDM)

Conventions:

Hy =21/, Hi = 2_1/3, (ReH,))/(ReHy) = tan 3

h\ —sina  Ccos ReHg
(H) - ﬁ( COS (v SiIlOé) (ReHS)

COS v
G i

T S What is the data telling us
Cd = gnQae/SM = cos B about this space?

Q
]

gauge/SM = sin(f — «)
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First look: *The* space of the MSSM Higgs

~ CMS Combined Likelihoods [4.9 fb™ @ 7 TeV]
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Higgs mass!
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o Peak likelihood lies close to the deoupling limit contour
o Consistency of this requires ALL couplings to revert to SM
o To check this, we can examine a 3D space...



Yukawa Couplings: General Type—II 2HDM
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CMS Combined Likelihoods [4.9 fb~! @ 7 TeV]
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How does the MSSM fare!?

AVieneric = M |Hul" 4+ X2 |Ha|* — 223 |Hy|? |Hyl|”

(+ non-minimal terms)

1
MSSM for neutral CP-even fields: A\j 23 = g( e 9/2)

with potentially lifesaving quantum corrections to )\, but for
“down-suppression’” we need

UZ X (/\1 —|—)\3> < Uczz X (/\2 —|—)\3)

i.e. big quantum-level correction to A2,3 when tan G > 1

Natural thing to consider: new non-minimal dynamics -- new fields
or compositeness...



Conclusions

l. Composite Higgs: Fairly SM-like couplings indicate strong
dynamics at a high scale (so for instance would need large N

for light resonances)

ll. SUSY: Some hints of hon-minimality so far; non-SM
couplings indicate that some new states could show up

Jelelp

lll. Generally: Couplings provide crucial indirect hints and
consistency checks for BSM physics...




Conclusions

l. Composite Higgs: Fairly SM-like couplings indicate strong
dynamics at a high scale (so for instance would need large N

for light resonances)

ll. SUSY:Some hints of non-minimality so far; non-SM
couplings indicate that some new states could show up

SOoon

lll. Generally: Couplings provide crucial indirect hints and
consistency checks for BSM physics...

... That model builders can themselves start to understand and apply

Each piece of the puzzle is important for consistency of the
emerging picture; ultimately more data are needed, but we should

be well-prepared to analyze things in as many ways as possible.



