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Outline: 
Three Parts

1. Theory Input -- from models to data
II.  Experimental Input -- from data to models

III.  Application/Results -- Compositeness and SUSY



Part One: Theory Input



The ‘substandard model’ has to be augmented (for renorm’ability):
Three massive vectors, triplet of approximate SU(2)

described at leading order:

U = exp [2iτaπa(x)/v]
!→ LUR†

∆L =
v2

4
tr

[
(DµU)†(DµU)

]

− v√
2

ψc
i U† × λijψj + h.c.

A simplified theory input: “The non-panacean Higgs”
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Assumption: the (custodial singlet) ‘Higgs’ might not be 
single-handedly responsible for unitarization, etc.  
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FOCUSING ON THESE GUYS

Case studies to come: (minimal) compositeness and SUSY
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A simplified theory input: “The non-panacean Higgs”
The ‘substandard model’ has to be augmented (for renorm’ability):

WHY? 

1.  Naturalness ~ Couplings’ deviation from SM

II.  Consistency check if other low-mass EWSB states appear

III.  Theorists need tools to construct (approximate) exclusions



Part Two: Experimental Input



o  We have this certainly for each channel...
o  ... and each subchannel when we’re lucky
o  Gives necessary information over whole mass range

Our handle: expected and observed exclusion limits 
(from each channel/subchannel)



Given background, signal, and observed events: construct likelihood:

P (n|nobs) =
nnobse−n

nobs!
× π(n)

A.L.−→ exp
[
−(n− nobs)2

2nobs

]
× π(n)

What do we know (thanks to the LHC)?
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Answer:
We know the amount by which we can rescale 

production/branching -- all in the same proportions -- 
and still be consistent with observation.

Said another way, we know what’s going on in a one-
dimensional parameter space: adequate in some cases, 
but in several others we’d like to push this information 

a bit further...

How do we proceed?

What do we know (thanks to the LHC)?
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Moving on: Comparison to RECONSTRUCTED Likelihood

P (µ) = N × exp
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Solve for remaining parameter using observed exclusion limit:

0.95 =
∫ µ̃(95%)

obs

0
dµ P (µ)



Moving on: Comparison to RECONSTRUCTED Likelihood

P (µ) = N × exp



−1
2
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1.96× µ
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exp

+ δ

)2




RECAP:
o  Expected exclusion tells us about s/b
o  Observed tells us delta, completes determination of (AL) likelihood
o  Good news: can be done over whole mass range, not just at ‘peaks’
    where information on best fit is available

Solve for remaining parameter using observed exclusion limit:

0.95 =
∫ µ̃(95%)

obs

0
dµ P (µ)



How well does this method do?

One possible check: the total combination

CMS ! 7 TeV, " 4.8 fb#1
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How well does this method do?

One possible check: the total combination

CMS ! 7 TeV, " 4.8 fb#1
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Gaussian
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120 200 300 400 500 600
0.2

0.5

1

2

mh !GeV"

o  ACCURATE WITHIN 10% BELOW 300 GeV; 
    within 20% at high masses

o  Compare to “naive graphical analysis” (adding in 
    inverse quadrature) which errs by 40% or more

o  Looks good: let’s apply the method and run with it



Part Three: Application

3A.  Composite Higgs
with flavor-universal Yukawa rescalings

(cf. SO(5)/SO(4) with fermions in spinor or fundamental)



Status report for unpopular mass points
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Status report for the Higgs at 125(?)(!)
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SM LOOKS FINE

ATLAS seems to disfavor the SM: 
how should we take this?

Don’t worry too much...

Status report for the Higgs at 125(?)(!)



ALL INCLUSIVE vs. ALL EXCLUSIVE subchannels:
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CMS Likelihoods !$ 4.8 fb#1 % 7 TeV": All Exclusive

Cautionary tale: Need Exclusive Searching and Reporting

(Preliminary) Conclusions:
o  Exclusive anayses suggest that couplings in this framework ~ SM
o  Compositeness scale (4 pi f) quite high...
o  ...other states from EWSB (e.g. vectors) heavy unless large-N



Part Three: Application

3B.  SUSY
in particular its minimal implementation



First: U and D Yukawas differ (Type-II 2HDM)
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h
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u
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Hu = 21/2, Hd = 2−1/2, 〈ReH0

u〉/〈ReH0
d〉 ≡ tanβ

Conventions:



First: U and D Yukawas differ (Type-II 2HDM)

cu ≡ ghQuc/SM =
cos α

sinβ

cd ≡ ghQdc/SM =
− sinα

cos β

a ≡ gauge/SM = sin(β − α)
} What is the data telling us 

about this space?
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Decoupling:

Supported here by 
couplings, but also by 

Higgs mass!

mh → mZ as mA0 →∞
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First look: *The* space of the MSSM Higgs

o  Peak likelihood lies close to the deoupling limit contour
o  Consistency of this requires ALL couplings to revert to SM
o  To check this, we can examine a 3D space...

H0, H±, A0 →∞;
⇒ a, cu, cd → 1

Decoupling:

Supported here by 
couplings, but also by 

Higgs mass!

mh → mZ as mA0 →∞



What does the accessible space of Yukawas look like?
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And for the MSSM?

''Up!Suppressed''
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Yukawa Couplings: General Type!II 2HDM

The *very constrained* quartic structure of the MSSM 
(all coming from D terms) forbids it from entering the 
down-suppressed region whenever tan beta > 1. 



Status...
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We can construct the likelihood in the full 3D space, then 
project the gauge direction onto the 2D Yukawa plane:



Status...
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We can construct the likelihood in the full 3D space, then 
project the gauge direction onto the 2D Yukawa plane:

While gauge coupling currently prefers decoupling (couplings = SM), 
fermions seem to sing a slightly different tune: inaccessible for MSSM!



How does the MSSM fare?

λ1,2,3 =
1
8
(g2 + g′ 2)MSSM for neutral CP-even fields:

∆Vgeneric = λ1 |Hu|4 + λ2 |Hd|4 − 2λ3 |Hu|2 |Hd|2

(+ non-minimal terms)

with potentially  lifesaving quantum corrections to     , but for 
“down-suppression” we need

λ1

v2
u × (λ1 + λ3) < v2

d × (λ2 + λ3)

i.e. big quantum-level correction to         when  λ2,3 tanβ > 1

Natural thing to consider: new non-minimal dynamics -- new fields 
or compositeness...



Conclusions

I.  Composite Higgs: Fairly SM-like couplings indicate strong 
dynamics at a high scale (so for instance would need large N 
for light resonances)

II.  SUSY: Some hints of non-minimality so far; non-SM 
couplings indicate that some new states could show up 
soon

III.  Generally: Couplings provide crucial indirect hints and 
consistency checks for BSM physics...
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I.  Composite Higgs: Fairly SM-like couplings indicate strong 
dynamics at a high scale (so for instance would need large N 
for light resonances)

II.  SUSY: Some hints of non-minimality so far; non-SM 
couplings indicate that some new states could show up 
soon

III.  Generally: Couplings provide crucial indirect hints and 
consistency checks for BSM physics...

...That model builders can themselves start to understand and apply

Each piece of the puzzle is important for consistency of the 
emerging picture; ultimately more data are needed, but we should 

be well-prepared to analyze things in as many ways as possible.


