HIGGS HUNTING
 WITH MINIMAL PREJUDICE

PHENO 2012:
 UNIVERSITY OF PITTSBURGH

Jamison Galloway

Based on arXiv:1202.3415 with A. Azatov and R. Contino; in progress with A. Azatov, S. Chang, and N. Craig

Outline:

Three Parts

I.Theory Input -- from models to data II. Experimental Input -- from data to models III. Application/Results -- Compositeness and SUSY

Part One:Theory Input

A simplified theory input:"The non-panacean Higgs" The 'substandard model' has to be augmented (for renorm'ability): Three massive vectors, triplet of approximate $\operatorname{SU}(2)$

$$
\begin{aligned}
U & =\exp \left[2 i \tau_{a} \pi_{a}(x) / v\right] \\
& \mapsto L U R^{\dagger}
\end{aligned}
$$

described at leading order:

$$
\begin{aligned}
\Delta \mathcal{L}= & \frac{v^{2}}{4} \operatorname{tr}\left[\left(D_{\mu} U\right)^{\dagger}\left(D^{\mu} U\right)\right] \\
& -\frac{v}{\sqrt{2}} \psi_{i}^{c} U^{\dagger} \times \lambda_{i j} \psi_{j}+\text { h.c. } .
\end{aligned}
$$

A simplified theory input:"The non-panacean Higgs"
The 'substandard model' has to be augmented (for renorm'ability): Three massive vectors, triplet of approximate $\mathrm{SU}(2)$

$$
\begin{aligned}
U & =\exp \left[2 i \tau_{a} \pi_{a}(x) / v\right] \\
& \mapsto L U R^{\dagger}
\end{aligned}
$$

described at leading order:

$$
\begin{aligned}
\Delta \mathcal{L}= & \frac{v^{2}}{4} \operatorname{tr}\left[\left(D_{\mu} U\right)^{\dagger}\left(D^{\mu} U\right)\right] \times\left(1+2 a \frac{h}{v}+b \frac{h^{2}}{v^{2}}+\ldots\right) \\
& -\frac{v}{\sqrt{2}} \psi_{i}^{c} U^{\dagger} \times \lambda_{i j} \psi_{j}+\text { h.c. } \times\left(1+c \frac{h}{v}+\ldots\right)
\end{aligned}
$$

Assumption: the (custodial singlet) 'Higgs' might not be single-handedly responsible for unitarization, etc.
OTHER NEW PHYSICS enters at potentially low scales
Case studies to come: (minimal) compositeness and SUSY

A simplified theory input:"The non-panacean Higgs"
The 'substandard model' has to be augmented (for renorm'ability): Three massive vectors, triplet of approximate $\mathrm{SU}(2)$

$$
\begin{aligned}
U & =\exp \left[2 i \tau_{a} \pi_{a}(x) / v\right] \\
& \mapsto L U R^{\dagger}
\end{aligned}
$$

described at leading order:

$$
\Delta \mathcal{L}=\frac{v^{2}}{4} \operatorname{tr}\left[\left(D_{\mu} U\right)^{\dagger}\left(D^{\mu} U\right)\right] \times\left(1+2 a \frac{h}{v}+b \frac{h^{2}}{v^{2}}+\ldots\right)
$$

$$
-\frac{v}{\sqrt{2}} \psi_{i}^{c} U^{\dagger} \times \lambda_{i j} \psi_{j}+\text { h.c. } \times\left(1+c_{v}^{h}+\ldots\right)
$$

FOCUSING ONTHESE GUYS

Case studies to come: (minimal) compositeness and SUSY

A simplified theory input:"The non-panacean Higgs"

The 'substandard model' has to be augmented (for renorm'ability): Three massive vectors, triplet of approximate $\mathrm{SU}(2)$

$$
\begin{aligned}
U & =\exp \left[2 i \tau_{a} \pi_{a}(x) / v\right] \\
& \mapsto L U R^{\dagger}
\end{aligned}
$$

described at leading order:

$$
\begin{aligned}
\Delta \mathcal{L}= & \frac{v^{2}}{4} \operatorname{tr}\left[\left(D_{\mu} U\right)^{\dagger}\left(D^{\mu} U\right)\right] \times\left(1+2 a-\frac{h}{v}+b \frac{h^{2}}{v^{2}}+\ldots\right) \\
& -\frac{v}{\sqrt{2}} \psi_{i}^{c} U^{\dagger} \times \lambda_{i j} \psi_{j}+\text { h.c. } \times\left(1+\left(c c_{v}+\ldots\right)\right.
\end{aligned}
$$

WHY?
I. Naturalness \sim Couplings' deviation from SM
II. Consistency check if other low-mass EWSB states appear
III. Theorists need tools to construct (approximate) exclusions

Part Two: Experimental Input

Our handle: expected and observed exclusion limits (from each channel/subchannel)

- We have this certainly for each channel...
- ... and each subchannel when we're lucky
- Gives necessary information over whole mass range

What do we know (thanks to the LHC)?

Given background, signal, and observed events: construct likelihood:

$$
\begin{aligned}
P\left(n \mid n_{\mathrm{obs}}\right) & =\frac{n^{n_{\mathrm{obs}}} e^{-n}}{n_{\mathrm{obs}}!} \times \pi(n) \\
& \xrightarrow{\text { A.L. }} \\
& \exp \left[\frac{-\left(n-n_{\mathrm{obs}}\right)^{2}}{2 n_{\mathrm{obs}}}\right] \times \pi(n)
\end{aligned}
$$

What do we know (thanks to the LHC)?

Given background, signal, and observed events: construct likelihood:

$$
\begin{aligned}
P\left(n \mid n_{\text {obs }}\right) & =\frac{n^{n_{\text {obs }}} e^{-n}}{n_{\text {obs }}!} \times \pi(n) \\
& \xrightarrow{\text { A.L. }} \exp \left[\frac{-\left(n-n_{\text {obs }}\right)^{2}}{2 n_{\text {obs }}}\right] \times \pi(n) \\
n=n_{B}+\mu n_{S}^{\mathrm{SM}} & \Rightarrow P(\mu)=\pi(\mu) \times \exp \left[\frac{\left(n_{B}+\mu n_{S}-n_{\mathrm{obs}}\right)^{2}}{2 n_{\mathrm{obs}}}\right]
\end{aligned}
$$

What do we know (thanks to the LHC)?

Given background, signal, and observed events: construct likelihood:

$$
\begin{aligned}
P\left(n \mid n_{\mathrm{obs}}\right) & =\frac{n^{n_{\mathrm{obs}}} e^{-n}}{n_{\mathrm{obs}}!} \times \pi(n) \\
& \stackrel{\text { A.L. }}{\longrightarrow} \exp \left[\frac{-\left(n-n_{\mathrm{obs}}\right)^{2}}{2 n_{\mathrm{obs}}}\right] \times \pi(n) \\
n=n_{B}+\mu n_{S}^{\mathrm{SM}} & \Rightarrow P(\mu)=\pi(\mu) \times \exp \left[\frac{\left(n_{B}+\mu n_{S}-n_{\mathrm{obs}}\right)^{2}}{2 n_{\mathrm{obs}}}\right]
\end{aligned}
$$

What do we know (thanks to the LHC)?

Given background, signal, and observed events: construct likelihood:

$$
\begin{aligned}
P\left(n \mid n_{\text {obs }}\right) & =\frac{n^{n_{\text {obs }}} e^{-n}}{n_{\text {obs }}!} \times \pi(n) \\
& \stackrel{\text { A.L. }}{\longrightarrow} \exp \left[\frac{-\left(n-n_{\text {obs }}\right)^{2}}{2 n_{\text {obs }}}\right] \times \pi(n) \\
n=n_{B}+\mu n_{S}^{\mathrm{SM}} & \Rightarrow P(\mu)=\pi(\mu) \times \exp \left[\frac{\left(n_{B}+\mu n_{S}-n_{\text {obs }}\right)^{2}}{2 n_{\text {obs }}}\right]
\end{aligned}
$$

$\tilde{\mu}$: upper bound on signal strength modifier at CL = alpha.

Two versions:
I. Expected (background only hypothesis)
2. Observed (compared to data)

What do we know (thanks to the LHC)?

Given background, signal, and observed events: construct likelihood:

$$
\begin{aligned}
& P\left(n \mid n_{\text {obs }}\right)=\frac{n^{n_{\text {obs }}} e^{-n}}{n_{\text {obs }}!} \times \pi(n) \\
& \stackrel{\text { A.L. }}{\longrightarrow} \exp \left[\frac{-\left(n-n_{\text {obs }}\right)^{2}}{2 n_{\mathrm{obs}}}\right] \times \pi(n) \\
& n=n_{B}+\mu n_{S}^{\mathrm{SM}} \Rightarrow P(\mu)=\pi(\mu) \times \exp \left[\frac{\left(n_{B}+\mu n_{S}-n_{\mathrm{obs}}\right)^{2}}{2 n_{\text {obs }}}\right]
\end{aligned}
$$

$\tilde{\mu}$: upper bound on signal strength modifier at
CL = alpha.

Two versions:
I. Expected (background only hypothesis)
2. Observed (compared to data)

What do we know (thanks to the LHC)?

Answer:
We know the amount by which we can rescale production/branching -- all in the same proportions -and still be consistent with observation.

Said another way, we know what's going on in a onedimensional parameter space: adequate in some cases, but in several others we'd like to push this information a bit further...

How do we proceed?

Moving on: Comparison to Likelihood

Now just map theory parameters to μ and compare to $P(\mu)$...

Moving on: Comparison to Likelihood

Now just map theory parameters to μ and compare to $P(\mu)$...
... that we need to determine for ourselves at this point

Moving on: Comparison to RECONSTRUCTED Likelihood

(Three variables, only two constraints: we need to be slightly clever)

Assume asymptotic limit, i.e. Poisson \longrightarrow Gaussian:

$$
P\left(n_{B}+\mu n_{S} \mid n_{\text {obs }}\right)=\pi(\mu) \times \exp \left[\frac{-\left(n_{B}+\mu n_{S}-n_{\text {obs }}\right)^{2}}{2 n_{\mathrm{obs}}}\right]
$$

Moving on: Comparison to RECONSTRUCTED Likelihood

(Three variables, only two constraints: we need to be slightly clever)

Assume asymptotic limit, i.e. Poisson \longrightarrow Gaussian:

$$
\begin{gathered}
P\left(n_{B}+\mu n_{S} \mid n_{\mathrm{obs}}\right)=\pi(\mu) \times \exp \left[\frac{-\left(n_{B}+\mu n_{S}-n_{\mathrm{obs}}\right)^{2}}{2 n_{\mathrm{obs}}}\right] \\
\Rightarrow \tilde{\mu}_{\mathrm{exp}}^{95 \%}=1.96 \times \frac{\sqrt{n_{B}}}{n_{S}}
\end{gathered}
$$

Moving on: Comparison to RECONSTRUCTED Likelihood

(Three variables, only two constraints: we need to be slightly clever)

Assume asymptotic limit, i.e. Poisson \longrightarrow Gaussian:

$$
\begin{gathered}
P\left(n_{B}+\mu n_{S} \mid n_{\mathrm{obs}}\right)=\pi(\mu) \times \exp \left[\frac{-\left(n_{B}+\mu n_{S}-n_{\mathrm{obs}}\right)^{2}}{2 n_{\mathrm{obs}}}\right] \\
\Rightarrow \tilde{\mu}_{\mathrm{exp}}^{95 \%}=1.96 \times \frac{\sqrt{n_{B}}}{n_{S}}
\end{gathered}
$$

For observed exclusion, use a simple rewriting:

$$
P\left(n_{B}+\mu n_{S} \mid n_{\mathrm{obs}}\right)=\pi(\mu) \times \exp \left[-\frac{1}{2}\left(\mu \frac{n_{S}}{\sqrt{n_{B}}} \frac{\sqrt{n_{B}}}{\sqrt{n_{\mathrm{obs}}}}+\delta\right)^{2}\right] ; \quad \delta \equiv \frac{n_{B}-n_{\mathrm{obs}}}{\sqrt{n_{\mathrm{obs}}}}
$$

Moving on: Comparison to RECONSTRUCTED Likelihood

(Three variables, only two constraints: we need to be slightly clever)

Assume asymptotic limit, i.e. Poisson \longrightarrow Gaussian:

$$
\begin{gathered}
P\left(n_{B}+\mu n_{S} \mid n_{\text {obs }}\right)=\pi(\mu) \times \exp \left[\frac{-\left(n_{B}+\mu n_{S}-n_{\text {obs }}\right)^{2}}{2 n_{\mathrm{obs}}}\right] \\
\Rightarrow \tilde{\mu}_{\mathrm{exp}}^{95 \%}=1.96 \times \frac{\sqrt{n_{B}}}{n_{S}}
\end{gathered}
$$

For observed exclusion, use a simple rewriting:

$$
P\left(n_{B}+\mu n_{S} \mid n_{\mathrm{obs}}\right)=\pi(\mu) \times \exp \left[-\frac{1}{2}\left(\mu \frac{n_{S}}{\sqrt{n_{B}}} \frac{\sqrt{n_{B}}}{\sqrt{n_{\mathrm{obs}}}}+\delta\right)^{2}\right] ; \quad \delta \equiv \frac{n_{B}-n_{\mathrm{obs}}}{\sqrt{n_{\mathrm{obs}}}}
$$

Now make the assumption $\frac{n_{\text {obs }}-n_{B}}{n_{\text {obs }}} \ll 1$

Moving on: Comparison to RECONSTRUCTED Likelihood

(Three variables, only two constraints: we need to be slightly clever)

Assume asymptotic limit, i.e. Poisson \longrightarrow Gaussian:

$$
\begin{gathered}
P\left(n_{B}+\mu n_{S} \mid n_{\text {obs }}\right)=\pi(\mu) \times \exp \left[\frac{-\left(n_{B}+\mu n_{S}-n_{\text {obs }}\right)^{2}}{2 n_{\text {obs }}}\right] \\
\Rightarrow \tilde{\mu}_{\mathrm{exp}}^{95 \%}=1.96 \times \frac{\sqrt{n_{B}}}{n_{S}}
\end{gathered}
$$

For observed exclusion, use a simple rewriting:

$$
P\left(n_{B}+\mu n_{S} \mid n_{\mathrm{obs}}\right)=\pi(\mu) \times \exp \left[-\frac{1}{2}\left(\mu \frac{n_{S}}{\sqrt{n_{B}}} \frac{\sqrt{n / 3}}{\sqrt{\eta}}+\delta\right)^{2}\right] ; \quad \delta \equiv \frac{n_{B}-n_{\mathrm{obs}}}{\sqrt{n_{\mathrm{obs}}}}
$$

Now make the assumption $\frac{n_{\text {obs }}-n_{B}}{n_{\text {obs }}} \ll 1$

Moving on: Comparison to RECONSTRUCTED Likelihood

(Three variables, only two constraints: we need to be slightly clever)

Assume asymptotic limit, i.e. Poisson \longrightarrow Gaussian:

$$
\begin{gathered}
P\left(n_{B}+\mu n_{S} \mid n_{\text {obs }}\right)=\pi(\mu) \times \exp \left[\frac{-\left(n_{B}+\mu n_{S}-n_{\text {obs }}\right)^{2}}{2 n_{\mathrm{obs}}}\right] \\
\Rightarrow \tilde{\mu}_{\mathrm{exp}}^{95 \%}=1.96 \times \frac{\sqrt{n_{B}}}{n_{S}}
\end{gathered}
$$

For observed exclusion, use a simple rewriting:

$$
P\left(n_{B}+\mu n_{S} \mid n_{\mathrm{obs}}\right)=\pi(\mu) \times \exp \left[-\frac{1}{2}\left(\mu \frac{n_{S}}{\sqrt{n_{B}}} \frac{\sqrt{n \sqrt{3}}}{\sqrt{\eta}}+\delta\right)^{2}\right] ; \quad \delta \equiv \frac{n_{B}-n_{\mathrm{obs}}}{\sqrt{n_{\mathrm{obs}}}}
$$

Now make the assumption $\frac{n_{\text {obs }}-n_{B}}{n_{\text {obs }}} \ll 1$

Moving on: Comparison to RECONSTRUCTED Likelihood

$$
P(\mu)=N \times \exp \left[-\frac{1}{2}\left(\frac{1.96 \times \mu}{\tilde{\mu}_{\exp }^{(95 \%)}}+\delta\right)^{2}\right]
$$

Moving on: Comparison to RECONSTRUCTED Likelihood

$$
P(\mu)=N \times \exp \left[-\frac{1}{2}\left(\frac{1.96 \times \mu}{\tilde{\mu}_{\exp }^{(95 \%)}}+\delta\right)^{2}\right]
$$

Solve for remaining parameter using observed exclusion limit:

$$
0.95=\int_{0}^{\tilde{\mu}_{\mathrm{obs}}^{(95 \%)}} d \mu P(\mu)
$$

Moving on: Comparison to RECONSTRUCTED Likelihood

$$
P(\mu)=N \times \exp \left[-\frac{1}{2}\left(\frac{1.96 \times \mu}{\tilde{\mu}_{\mathrm{exp}}^{(95 \%)}}+\delta\right)^{2}\right]
$$

Solve for remaining parameter using observed exclusion limit:

$$
0.95=\int_{0}^{\tilde{\mu}_{\text {oss }}^{(95 \%)}} d \mu P(\mu)
$$

RECAP:

- Expected exclusion tells us about s/b
- Observed tells us delta, completes determination of (AL) likelihood
- Good news: can be done over whole mass range, not just at 'peaks' where information on best fit is available

How well does this method do?

One possible check: the total combination

One possible check: the total combination

- ACCURATE WITHIN I0\% BELOW 300 GeV; within 20\% at high masses
- Compare to "naive graphical analysis" (adding in inverse quadrature) which errs by 40\% or more
o Looks good: let's apply the method and run with it

$$
120 \quad 200
$$

$m_{h}(\mathrm{GeV})$

Part Three:Application

3A. Composite Higgs
with flavor-universal Yukawa rescalings
(cf. $\mathrm{SO}(5) / \mathrm{SO}(4)$ with fermions in spinor or fundamental)

Status report for unpopular mass points

Status report for the Higgs at 125(?)(!)

Status report for the Higgs at 125(?)(!)

Status report for the Higgs at 125(?)(!)

ATLAS seems to disfavor the SM: how should we take this?

Status report for the Higgs at 125(?)(!)

ATLAS seems to disfavor the SM: how should we take this?

Don't worry too much...

Cautionary tale: Need Exclusive Searching and Reporting

ALL INCLUSIVE vs.ALL EXCLUSIVE subchannels:

Cautionary tale: Need Exclusive Searching and Reporting

ALL INCLUSIVE vs.ALL EXCLUSIVE subchannels:

(Preliminary) Conclusions:

- Exclusive anayses suggest that couplings in this framework ~ SM
- Compositeness scale (4 pi f) quite high...
- ...other states from EWSB (e.g. vectors) heavy unless large-N

Part Three:Application

3B. SUSY
in particular its minimal implementation

First: U and D Yukawas differ (Type-II 2HDM)

Conventions:

$$
\begin{gathered}
H_{u}=2_{1 / 2}, H_{d}=2_{-1 / 2},\left\langle\operatorname{Re} H_{u}^{0}\right\rangle /\left\langle\operatorname{Re} H_{d}^{0}\right\rangle \equiv \tan \beta \\
\binom{h}{H}=\sqrt{2}\left(\begin{array}{cc}
-\sin \alpha & \cos \alpha \\
\cos \alpha & \sin \alpha
\end{array}\right)\binom{\operatorname{Re} H_{d}^{0}}{\operatorname{Re} H_{u}^{0}}
\end{gathered}
$$

First: U and D Yukawas differ (Type-II 2HDM)

Conventions:

$$
\begin{gathered}
H_{u}=2_{1 / 2}, H_{d}=2_{-1 / 2},\left\langle\operatorname{Re} H_{u}^{0}\right\rangle /\left\langle\operatorname{Re} H_{d}^{0}\right\rangle \equiv \tan \beta \\
\binom{h}{H}=\sqrt{2}\left(\begin{array}{cc}
-\sin \alpha & \cos \alpha \\
\cos \alpha & \sin \alpha
\end{array}\right)\binom{\operatorname{Re} H_{d}^{0}}{\operatorname{Re} H_{u}^{0}}
\end{gathered}
$$

$$
\left.\begin{array}{rl}
c_{u} & \equiv g_{h Q u^{c}} / \mathrm{SM}=\frac{\cos \alpha}{\sin \beta} \\
c_{d} & \equiv g_{h Q d^{c}} / \mathrm{SM}=\frac{-\sin \alpha}{\cos \beta} \\
a & \equiv \text { gauge } / \mathrm{SM}=\sin (\beta-\alpha)
\end{array}\right\}
$$

What is the data telling us about this space?

First look:*The* space of the MSSM Higgs

First look:*The* space of the MSSM Higgs

First look:*The* space of the MSSM Higgs

- Peak likelihood lies close to the deoupling limit contour - Consistency of this requires ALL couplings to revert to SM - To check this, we can examine a 3D space...

What does the accessible space of Yukawas look like?

And for the MSSM?

The *very constrained* quartic structure of the MSSM (all coming from D terms) forbids it from entering the down-suppressed region whenever tan beta > I.

Status...

We can construct the likelihood in the full 3D space, then project the gauge direction onto the 2D Yukawa plane:

Status...

We can construct the likelihood in the full 3D space, then project the gauge direction onto the 2D Yukawa plane:

While gauge coupling currently prefers decoupling (couplings = SM), fermions seem to sing a slightly different tune: inaccessible for MSSM!

How does the MSSM fare?

$$
\Delta V_{\text {generic }}=\lambda_{1}\left|H_{u}\right|^{4}+\lambda_{2}\left|H_{d}\right|^{4}-2 \lambda_{3}\left|H_{u}\right|^{2}\left|H_{d}\right|^{2}
$$

(+ non-minimal terms)
MSSM for neutral CP-even fields: $\lambda_{1,2,3}=\frac{1}{8}\left(g^{2}+g^{\prime 2}\right)$
with potentially lifesaving quantum corrections to λ_{1}, but for "down-suppression" we need

$$
v_{u}^{2} \times\left(\lambda_{1}+\lambda_{3}\right)<v_{d}^{2} \times\left(\lambda_{2}+\lambda_{3}\right)
$$

i.e. big quantum-level correction to $\lambda_{2,3}$ when $\tan \beta>1$

Natural thing to consider: new non-minimal dynamics -- new fields or compositeness...

Conclusions

I. Composite Higgs: Fairly SM-like couplings indicate strong dynamics at a high scale (so for instance would need large N for light resonances)
II. SUSY: Some hints of non-minimality so far; non-SM couplings indicate that some new states could show up soon
III. Generally: Couplings provide crucial indirect hints and consistency checks for BSM physics...

Conclusions

I. Composite Higgs: Fairly SM-like couplings indicate strong dynamics at a high scale (so for instance would need large N for light resonances)
II. SUSY: Some hints of non-minimality so far; non-SM couplings indicate that some new states could show up soon
III. Generally: Couplings provide crucial indirect hints and consistency checks for BSM physics...
...That model builders can themselves start to understand and apply
Each piece of the puzzle is important for consistency of the emerging picture; ultimately more data are needed, but we should be well-prepared to analyze things in as many ways as possible.

