

SUSY searches with b-jets at CMS

Josh Thompson Cornell University 26 October 2011 West Coast ATLAS forum, SLAC

Outline

• Introduction

- The LHC and CMS
- SUSY and b-jets
- Analyses
	- CMS has two 2011 b-tagged SUSY searches
		- \cdot MT2+b, MET+b
	- I will cover both but give more detail on MET+b
		- Event selection
		- **· Background estimation methods**
- Results and interpretation

CMS at the LHC J. Thompson, Cornell 26 Oct 2011

• proton-proton collider currently at 3.5 TeV per beam (designed for 7 TeV per beam) • 9300 superconducting magnets (1232 dipoles) in a 27 km ring

CMS is 80m under Cessy, France

LHC

CERN Meyrin site

ATLAS

Davis and Cornell offices

The CMS Detector

- 21m long, 15m in diameter
- 14000 tons

Muon endcaps (CSC+RPC) Muon barrel (DT+RPC) Hadron calorimeter EM Calorimeter 3.8T Solenoid Silicon pixel $+$ strip tracker Preshower (Pb+Si) CMS Collaboration: • \sim 2500 scientists $+$ engineers • ~850 students • 173 institutes • 40 countries

A slice of CMS J. Thompson, Cornell 26 Oct 2011

2011 data-taking at CMS

- \cdot >5 fb⁻¹ delivered so far
	- 2010 dataset now delivered in a few hours
- 1318 bunches colliding in CMS with 50 ns spacing
	- (design is twice as many bunches at 25 ns)
	- Very good emittance (smaller transverse beam size) and bunch intensity
	- Since Sep., β^* lowered to 1.0m (smaller transverse beam size)
		- Very high pileup
			- At $L \sim 3 \times 10^{33}$ cm⁻² s⁻¹, ~15 interactions/bunch crossing
- Recorded/delivered ~ 90%
- Good / recorded \sim 90%
- \sim 98% of the detector is working and in the readout

Current lumi uncertainty = $4.5%$

Why Supersymmetry?

- The Standard Model has never* failed to describe our data, despite our best efforts
- But the observed $SM + SM$ Higgs is not the whole story….
	- e.g. "Hierarchy problem"
		- Higgs mass receives radiative corrections due to quantum loops, proportional to the largest scale in the theory (Planck Mass, 10¹⁹ GeV)
- SUSY adds a partner particle for each SM particle, with the same quantum numbers, except differing by $\frac{1}{2}$ unit of spin; e.g.:
	- **□** Spin ½ quarks \rightarrow spin 0 squarks (q~)
	- □ Spin 1 gluons \rightarrow spin ½ gluinos (g~)
		- This new symmetry neatly cancels the dangerous contributions to the Higgs mass

7

Signatures of SUSY

- Common to assume *R-parity conservation*
	- i.e. SUSY particles produced in pairs and always decay into another SUSY particle
		- Lightest SUSY particle (LSP) is stable
			- Good dark matter candidate
			- Escapes our detectors unseen \rightarrow missing energy
- At the LHC, production dominated by \cdot gluino-gluino, squark-squark, gluinosquark
	- These are colored objects and so a lot of jets are produced when they decay
- Classic LHC SUSY signature:
	- Jets + Missing transverse energy (MET)
		- Why transverse?
			- \cdot remember that we don't know the initial momentum along the beamline, so we can only talk about the momentum balance in the transverse direction

LSP

jets

jets

 σ ത്ത് q

b jets and SUSY

• Example signals:

- Models with a light 3rd generation of sparticles (b~, \tilde{t} \sim), with the other squarks heavier
	- \cdot e.g. g $\sim \Rightarrow$ ttX \sim
- Models with all squarks heavy, but gluinos light
	- \cdot e.g. high tan β , high m_{0,} low $m_{1/2}$ in the CMSSM (like) "LM9")
	- \cdot g~ \rightarrow qqX~ with q=b,t
- Adding b-tagging also provides an experimentally complementary approach
	- Different mix of backgrounds, different systematics, etc

Mass spectrum of CMSSM test point "LM9"

Overview of backgrounds

- Signature: jets+MET+b tag
- Main background:
	- □ ttbar \rightarrow Wb Wb
		- One W decays to hadrons
		- Other W decays to lv, where $I=\tau\rightarrow$ hadrons or $I=e,\mu,\tau\rightarrow e,\mu$ and e, μ slips through veto
			- Neutrino provides a source of real MET
- Other backgrounds:
	- QCD
	- W+Jets
	- \overline{z} Z+Jets, with $Z\rightarrow v\overline{v}$

Event selection: jets

- Expect lots of jet production from SUSY
	- Multiple hard jets
		- \cdot \geq 4 for MT2 analysis
			- $p_T > 20$ GeV, $|\eta| < 2.4$
		- \cdot \geq 3 for MET analysis
			- $p_T > 50$ GeV, $|\eta| < 2.4$
	- **Example H**_T= Σ _{jets} | p_T|
		- \cdot >650 GeV for MT2 analysis
		- \cdot >350 (500) GeV for Loose (Tight) branch of MET analysis

11

Event selection: lepton veto

- ttbar is the largest background
- Reduce it by vetoing events with an isolated e or μ , passing the following criteria:
	- $p_T > 10$ GeV
	- $\lceil \cdot \rceil$ |n| < 2.4 (plus veto of barrel/endcap transition for electrons) ▫ Various quality and isolation requirements
- Remaining ttbar events either have lepton that is outside of the selection above $(\sim 2/3)$, or have $W \rightarrow \tau \rightarrow$ hadrons (~1/3)

Event selection: missing energy

- Weakly interacting particles in SUSY final state $\bar{\mathcal{P}}$ missing transverse energy
	- MET analysis uses MET directly
		- \cdot MET $>$ 200 (300) for GeV for Loose (Tight)
	- MT2 analysis uses MT2
		- An extension of the transverse mass concept (commonly used for $W\rightarrow V$ decays) to decay chains with 2 unobserved particles.

Events

 $data / MC$

 Largely correlated with MET, but gives better rejection of non -SUSY events

$$
(M_{T2})^2 = 2A_T = 2p_T^{vis(1)}p_T^{vis(2)}(1 + cos\phi_{12})
$$

Triggers

• How to select this signature online?

- Use online versions of HT, missing energy
	- These calculations use calorimeter-only quantities (no "particle flow" reconstruction)
	- The missing energy calculation uses only jets ("MHT")
- MT2+b analysis uses HT trigger
	- HT > 550 GeV (computed online)
		- Fully efficient for offline analysis HT cut
- MET+b analysis uses HT+MHT cross-trigger
	- \overline{a} Online thresholds: HT > 300 GeV, MHT > 80 GeV
		- \cdot Fully efficient offline HT $>$ 400 GeV
			- Below plateau, correct MC for small inefficiency
		- \cdot 99 \pm 1% efficient for (PF) MET $>$ 200 GeV

NB: I'm giving the tightest thresholds used. Earlier in the run, thesholds were lower

Event selection: $\Delta\phi$ (jet, MET)

- QCD events can sneak into high MET region when a jet is severely mismeasured
	- Creates fake MET aligned with the jet
- Reject this background with angle $\Delta\phi$ (jet, MET)
	- **□** In MT2+b, require $\Delta\phi_{\text{min}}$ (all jets, MET) > 0.3
	- In MET+b, use a slightly different variable
		- (more on the following slides)

MET+b analysis

Motivation for $\Delta\phi_N$ (jet, MET)

- The standard $\Delta\phi$ (jet, MET) variable is great for rejecting QCD at high MET
	- But it is also highly correlated with MET (and MT2)
- For an event with a very badly measured jet, why is the angle $\Delta\phi$ (jet, MET) non-zero?
	- The MET direction is smeared by the small mismeasurements of the p_T of the other jets in the event

• This smearing becomes less important as the big mismeasurement (hence MET) increases \rightarrow MET and $\Delta\phi$ (jet, MET) are correlated • we try to model this and construct an uncorrelated variable

J. Thompson, Cornell 26 Oct 201

 $\Delta\phi_i$ T

2

 E_T^{miss}

 $let p_+$ resolution
 0.2

 Δ 0.1

50

100

200

k

j

MET+b analysis

 $\alpha_{\rm k}$

PAS JME-10-014

=35.9 pb¹ CMS preliminary 2010

Anti-k., R=0.5)

p_[GeV]

 $i \frac{\Delta \varphi_i}{\alpha_j}$ $\frac{\Gamma_i \cdot \Gamma_i}{\alpha_j}$

 $\Delta\phi_N$ construction

 \bullet T_i is the component of mismeasurement of other jets that is transverse to the $\Delta\phi$ jet *i*

$$
T_i^2 \approx \sum_n (\sigma_{pT,n} \sin \alpha_n)
$$

- Use 10% for jet p_T resolution $\sigma_{pT,n}$
	- Cross-checks done to show we are not sensitive to this choice
- $\Delta\phi_{N,i} = \Delta\phi_i / \tan^{-1}(T_i / MET)$
- This new variable is $\Delta\phi_i$ normalized by its resolution

J. Thompson, Cornell 26 Oct 201

MET+b analysis

$\Delta \phi$ versus $\Delta \phi_N$

- Plot the ratio of events passing the $\Delta\phi$ cut to the ratio failing it, as a function of MET
	- This is a good way to judge the correlation

(flat means uncorrelated)

Event selection: b tagging

- Both of these analyses use the Simple Secondary Vertex High Purity algorithm
	- Find a secondary vertex in a jet with at least 3 tracks
		- Make a tight selection on the discriminator value with ~50% efficiency and ~0.1% mistag for light jets (higher for charm)
- For signal efficiency evaluation, use data-driven scale factors to correct MC b-tag efficiency
	- $p_T < 240$ GeV: centrally provided by the CMS b-tag group
	- \sim 240 $<$ p $_{\rm T}$ <350 GeV: the MET+b analysis performed an evaluation using the ratio of double b-tagged events to single b-tagged events using a 1 lepton (~ttbar) control sample
		- \cdot Found scale factors to be the same, with a larger uncertainty
	- $p_T > 350$ GeV: MET+b analysis uses a scale factor of 0 for signal efficiency (conservative for a limit)
		- \cdot Not enough statistics (yet) for a proper evaluation of the scale factor in data
- Both analyses use ≥ 1 b tag selections
	- **■** MET+b also uses selections with ≥ 2 b tags

MC expectations in 1.1 fb⁻¹

- After the event selection:
	- Jet multiplicity, HT
		- \cdot Lead jet p_T in MT2 analysis
	- \overline{a} Lepton vetoes (e, μ)
	- $\Delta \phi_{(N)}$ requirement
	- MT2/MET requirement

Note that MET analysis has 4 selections: (Loose, Tight) $x \geq b$, $\geq 2b$) The ones shown here are the most powerful for setting limits.

MT2+b: background methods

- ttbar
	- Use control sample with 1 electron or 1 muon
		- \cdot Use MC efficiency numbers to move from 1 lepton \rightarrow 0 lepton sample
			- \cdot Perform this method in control region $100<$ MT2 $<$ 150 **GeV**
				- Compare prediction for 0 lepton sample to MC for 0 lepton sample; level of agreement quantified in the uncertainty
		- . Scale from control region to signal region using MC, propagating uncertainties
- QCD
	- **Extracted using a ratio of events that pass/fail** $\Delta\phi_{\text{min}}$ selection
		- \cdot Extrapolated using a exp+c function to model this ratio
	- \overline{P} Find 0.8 \pm 0.8 QCD events

22

$MET+b$: ttbar+W+t method

- MET shapes in 1 lepton sample are compatible with 0 lepton sample
- Find MET shape in 1 lepton control sample, then normalize to ttbar-dominated region at medium MET (150<MET<200 GeV)

$$
N_{SIG}^{top+W} = \frac{N_{SIG-SL}}{N_{SB-SL}} \times (N_{SB} - N_{SB}^{Z \to \nu\overline{\nu}} - N_{SB}^{QCD} - N_{SB}^{other,MC}
$$

Subtraction of contamination from other backgrounds (mostly data-driven)

Not discussed here: independent method used as a cross-check

J. Thompson, Cornell 26 Oct 2011

MET+b: QCD

• $\Delta\phi_N(j,MET)$ variable and MET are ~uncorrelated ▫ Therefore an extrapolation can be made from low MET to high MET of the fraction of events that pass the $\Delta\phi_N(j, MET)$ selection

 $(N_{pass})^{high MET} = (N_{pass}/N_{fail})^{low MET} \{(N_{fail})^{high MET} - N_{contamination}\}$ taken from MC

ttbar and EW contamination

We make this estimate in 2 different "high MET" regions: \rightarrow 150<MET<200 GeV (used in ttbar estimate) \rightarrow Signal Region

$MET+b: Z\rightarrow VV$ method

- Use $Z\rightarrow II$, l=e, μ control samples
	- Treat the event as though you didn't see the leptons and you have a pseudo $Z\rightarrow VV$ event
	- Correct for:
		- Branching ratio $Z\rightarrow VV$ / $Z\rightarrow H = 5.95$
		- \cdot efficiency to detect the leptons ε

$$
\epsilon = \mathcal{A} \cdot \epsilon_{\ell \text{ reco}}^2 \cdot \epsilon_{\text{trig}} \cdot \epsilon_{\ell \text{ sel}}^2
$$

Efficiency factors for the leptons

Acceptance ${\cal A}$: sufficient p_T, in $|\eta|$ range (MC) ε _{l reco}: reconstruction eff for leptons in the acceptance (from CMS e/ γ group) ϵ_{trig} : trigger efficiency for dilepton control samples (orthogonal trigger in data) $\varepsilon_{\text{||sel}}$: efficiency for various quality criteria added for our analysis (tag and probe in data)

$MET+b: Z\rightarrow VV$ details

- Must determine the purity of the $Z\rightarrow ll$ samples
	- done by fitting a Z mass peak to samples obtained with somewhat looser selection criteria
- Dilepton control samples usually have no events after the nominal MET, HT selections
	- Do estimates for looser selections, extrapolate using MC
		- MC seems to be reliable
		- Cross-check this procedure several ways, including a method that loosens the btagging instead of the kinematic selections
			- \cdot measure (loose b tag)/(nominal b tag) in a data control sample

$MET+b$: Main systematics on backgrounds

- QCD
	- closure in MC
		- often driven by high-weight events in MC
		- closure was done in several ways, including a test with the MC reweighted based on the jet multiplicity distribution in data
- ttbar
	- QCD subtraction ▫ closure in MC
- $Z\rightarrow vv$
	- MC-based scaling to HT, MET tails

Results in 1.1 fb-1 of data

• Observed events consistent with SM background predictions

LM9 is eliminated by both analyses

Signal efficiency systematics MET+b values shown; MT2+b results similar

Table 17: Systematic uncertainties, in percent, on the efficiency of the LM9 signal. The "Other" category includes the trigger efficiency, the lepton veto, and the anomalous $\bar{E}_{\rm T}^{\rm miss}$ terms.

 \rightarrow JES, unclustered energy, b-tag eff, PDF are evaluated point-by-point across the CMSSM and simplified model planes \rightarrow Other uncertainties are fixed to LM9 values.

Likelihood treatment (for limits) MET+b analysis

- Combine background estimates into a RooStats framework that incorporates uncertainties and SUSY contamination
	- Event counts in data get Poisson uncertainties
		- \cdot 12 numbers total (11 control regions + signal box)
		- Note that the 5 of the control boxes can be "contaminated" by SUSY and this is treated in a consistent way in the likelihood
	- Other parameters get log normal uncertainties
	- 95% CL upper limits are evaluated using CLs tools built into RooStats

• systematics on the background estimation methods

- e.g. closure test results,
- $Z\rightarrow VV$ efficiency factors, ...
- statistical and systematic uncertainty on signal efficiency

we focus on that result

Interpretation in the CMSSM

Note: MT2+b is tan β =10 while MET+b is tan β =40 \rightarrow ignoring this difference, limits are similar

More on MT2+b results in CMSSM

 \rightarrow a key advantage of b-tagged SUSY searches is that they can have looser kinematic selections while maintaining low levels of background

Interpretation in Simplified Models

- Hard to generalize results in full models like CMSSM
	- Instead look at a simplified model, which is easier for a theorist to use when building new models
	- □ In our case: $q_{\alpha}q_{\alpha}$ \rightarrow bbX \sim bbX \sim
		- Exclusive production and decay
	- Set an upper limit on the cross section as function of mg \sim , mX \sim
		- (Also get excluded region based on NLO cross section)
 $MT2 + b$

 \rightarrow Similar sensitivity; MET+b does better in regions closer to the diagonal

Interpretation in Simplified Models

• Note: Region very near the diagonal is very sensitive to initial state radiation (\overline{SR}) all radiation (D N). state radiation (ISR).

 $\mathbf{r} = \mathbf{r} \cdot \mathbf{r} + \mathbf$ At the moment we do not consider a systematic uncertainty due to ISR in these analyses, so we do not show results in this region.

 \rightarrow Similar sensitivity; MET+b does better in regions closer to the diagonal

Note on kinematics and selections

- Simplified models have widely varying kinematics by construction
	- Heavy gluino, light LSP gives high $p_{\overline{L}}$ daughters \rightarrow hard jets and lots of MET
	- Nearly degenerate gluino, $LSP \rightarrow$ soft jets and little MET
		- Challenging! Favors looser selections
- In MET+b, choose to show the limit at each point as determined by the best expected limit
	- "expected" limit is derived from data-driven background estimates, but without using the observed data counts in the signal region
	- The limit you would expect if your observed data exactly matched your background estimate

Conclusion

- CMS has two b-tagged SUSY searches with 1.1 fb⁻¹ of data
	- Expect publications with the full 2011 dataset
- Observed data consistent with background
	- Limits placed in CMSSM, 4b simplified model
		- Watch for more simplified models in the future
			- Limits on stop mass are particularly interesting…
- Further information
	- https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS
		- \cdot MT2+b: CMS PAS SUS-11-005
			- http://cms-physics.web.cern.ch/cms-physics/public/SUS-11-005-pas.pdf
		- \cdot MET+b: CMS PAS SUS-11-006
			- http://cms-physics.web.cern.ch/cms-physics/public/SUS-11-006-pas.pdf

37

J. Thompson, Cornell 26 Oct 2011

Extra slides

Particle flow reconstruction

• CMS makes heavy use of "particle flow" reconstruction, which combines information from the tracker, calorimeters, and muon systems to reconstruct jets, leptons, MET, etc

CMS PAS JME-10-005

MET resolution enhanced using PF reconstruction

What is the CMSSM?

- SUSY, even in its "Minimal" MSSM variant, is rather unwieldy
	- Constrained Minimal Supersymmetric Standard Model (CMSSM) is a minimal supergravity (mSUGRA)-inspired model of soft supersymmetry breaking
		- Only 5 parameters!
			- \cdot m₀: scalar mass
			- \cdot m_{1/2}: universal gaugino mass
			- A_0 : trilinear coupling
			- \cdot tan β : ratio of Higgs VEVs
			- \cdot sign(μ): sign of the Higgs mixing parameter
		- \cdot "It is a matter of some controversy whether the assumptions going into this parameterization are well-motivated on purely theoretical grounds, but from a phenomenological perspective they are clearly very nice." – S.Martin [hep-ph/9709356v6]
			- \cdot In practice, even a 2d parameter space is tough to simulate!

MET+b analysis

Cross-check of ttbar+W+t with $\Delta\theta_T$

- For $W\rightarrow e,\mu,\tau$ ($\tau\rightarrow e,\mu$) decays
	- Angular distribution of lepton w.r.t. W, $\Delta\theta_{\sf T}$, depends on W polarization, which is well understood
		- \cdot $\Delta\theta$ _T low \rightarrow lepton is boosted forward, neutrino goes backward->lower MET
		- \cdot $\Delta\theta$ _T high \rightarrow lepton softer and neutrino boosted forward->higher MET
- For $W \rightarrow \tau$ ($\tau \rightarrow$ had) decays
	- **Single muon control sample from** $\mu + H_T$ trigger
	- **Transform muon into a** τ **jet using a** response template taken from MC
- For dileptonic decays
	- Dilepton control sample, scaled by an efficiency ratio taken from MC

Method for decays with e or μ ttbar+W+t cross-check: MET+b analysis

- Start with single lepton control sample
- Rescale the MET distributions of the SL sample in bins of $\Delta\theta_T$ using scale factors from MC
- Predicts both the shape and normalization of signal sample MET distribution

MET+b analysis

MET spectrum predictions >=1b, Tight (HT>500 GeV) selection ttbar+W+t cross-check:

Note: cross-check done only for Tight selection because trigger requirements preclude doing Loose selection

Comparison with ATLAS

(Keep in mind that CMS uses slightly more luminosity)

MET+b analysis

Interpretation in CMSSM • Observed limits for all four selections

95% CL exclusion using CLs

MET+b: QCD systematics

MC:

vary MC-based subtraction by $+/-50\%$

[this number comes from the $>=2$ b Tight case. Use it for all cases to be conservative] Closure:

 $1-N_{true}/N_{predicted}$ [in quadrature with its stat error] (use worse of raw MC and jet multiplicity-reweighted MC) LSB range:

vary LSB range by $+/-10$ GeV and take the larger observed shift \rightarrow factor of $>$ 2 change in statistics with each shift

Systematic uncertainties in %

 NB on $>=$ 2, Loose, SIG:

Large systematic stems from large stat error on N_{true} in MC * reflects the fact that the nominal value is 0, so a % change is ill-defined.

$MET+b: Z\rightarrow VV$ systematics

• Background subtraction:

- From the stat uncertainty in the fits to the Z peak
- MC closure:
	- Full lack of closure taken as a systematic
- MC extrapolation:
	- □ 50% for MC scale factor > 0.1; 100% for MC scale factor $<$ 0.1
		- These numbers are justified by the spread seen in the cross-checks

	size $(\%)$	
Contribution	$Z \rightarrow \mu^+ \mu^ Z \rightarrow e^+ e^-$	
Background subtraction	18	20
Acceptance		2
Trigger efficiency	3	3
Lepton selection efficiency	5	5
MC closure	19	11
MC extrapolation	$0 - 100$	$0 - 100$
Total without extrapolation	27	24
Total with 50% extrapolation uncertainty	57	55
Total with 100% extrapolation uncertainty	104	103

Table 7: Systematic uncertainties for the $Z \rightarrow \nu \bar{\nu}$ background estimate.

$MET+b$: ttbar systematic uncertainties

- Closure systematic taken from worse (for each selection independently) of ttbar+W+t closure test and ttbar-only closure test
- Data-driven subtractions varied by their errors
- Small MC-driven subtraction varied by \pm 100%

