Liquid Helium Scintillation

Candidate for detecting beam losses in the LHC?

T. Wijnands EN/HDO

Basic principle

Scintillation mechanism

'Scintillation pulse'

'Afterglow effect'

Scintillation signals

'McKinsey et al. Phys. Rev A 67 062716 (2003)'

Scintillation light - I

- Fluorescence occurs at a <u>lower</u> energy level than that required for excitation
- There is thus little self absorption of the scintillation light

Scintillation light - II

- The peak of $He_2A_1\Sigma_u^+$ emits light at approximately 80-100 nm (EUV region)
- Light at this wavelength does not propagate through a SM silica optical fibre because of Raleigh scattering (spectral dependencies as $1/\lambda^4$)

Light detection techniques

• Direct detection technique

Measure extreme UV light at 100 nm with special AXUV photodiodes which have :

- 1. No surface dead region i.e. no recombination of photo generated carriers in the doped n-region or at the silicon-silicon dioxide interface
- 2. An extremely thin (3 to 7 nm) silicon dioxide junction entrance window
- 3. Silicon thickness can be optimized to maximize yield for Helium
- Indirect detection technique
 - 1. Wavelength shifting via coating of optical fibre to longer wavelength
 - Absorb the primary EUV light
 - Reradiate the energy at a lower wavelength
 - 2. Use classical detection (PMT) technique

Direct vs. Indirect detection

• Direct detection technique

- Photodiodes are very resistant to TID
- Neutron damage may deteriorate the devices rather rapidly (needs investigating)
- EUV diodes are special R&D developments (http://www.ird-inc.com/)
- Indirect detection technique
 - Wavelength shifters typically induce a loss of 10-30%
 - Reduce the overall response time of the system
 - Wavelength shifting optical fibres are generally not radiation tolerant

Feasability

- Highly efficient conversion into detectable light ?
 - Depending on detection technique of EUV light (direct/indirect)
 - Probably of the order of 10-15%
- Linear relationship E_{dep} vs. light yield ?
 - Not checked yet for exotic particles at high E in a HEP radiation field
 - Ok for X, neutrons and electron beams at 60 MeV
- Transparency for λ_{emitted} ? Ok !
- Short decay time without delay Ok !
- High optical quality & easy to manufacture ? Ok !
- Easy coupling to a light sensor?
 - Needs further investigation, certainly not so easy

Open question : what is the purity of the He in the LHC ?