

CryoBLM Beam test – first results

Outline

- Measurement setup
- Beam characteristics
- Signal estimations
- Single particle mode
 - Trigger level discussion
 - Diamond results
 - Si results
 - Comparison
- DC measurements
 - LHe chamber results
 - Diamond results
 - Si results
- General comparison (estimation, single particle and DC)
- Open questions and future measurements

Beam test area

Semiconductors holder from Vladimir Eremin

- 4 Silicon detectors
- 1 single crystal diamond (sCVD)

Inside cryostat - detectors

Inside cryostat

Cable length between detectors and preamplifiers ~ 1.5 m

Electronic setup general overview

CryoBLM workshop October 2011

7 / 35

T9 Beam characteristics

- Beam generated by directing PS beam onto target
- Particles consist of positive pions, kaons and protons (dominating)
- 10 GeV/c particles
- Beam intensity 350 000 particles/spill
- Size at focus about 1 cm²
- Spill duration of 400 ms (about 875 particles/ms)
- One spill every 45 s
- Practical advantages:
 - Close to cryolab
 - Enough space available for cryogenic setup
 - Fast beam stop and entering of radiation area possible

Beam characteristics Spill shape

- Spill shape of one spill and about 3000 entries
- Adding more spills for better statistics and better average spill shape

Signal Estimation

• Estimations done with:

- Stopping power of material P_{stop}
- Density of material ρ
- Electron-hole Pair creation energy E_{pair}
- Dimensions of detector (active area A_{active} and length I)
- Beam characteristics (beam size A_{beam}, number of particles n_p and spill duration)
- Charge per particle:
 - Liquid helium: 12.2 fC
 - scvd: 3.79 fc
 - Si: **5.68 fC**
- Charge per spill:
 - Liquid helium: **3.66 nC**
 - sCVD: **182 pC**
 - Si: **426 pC**

$$Q = \frac{P_{stop} \cdot \rho \cdot l}{E_{pair}}$$

Signal Estimation (Check done to see if signals measurable)

- Estimated currents from particles:
 - LHe chamber: 9.14 nA
 - sCVD: 454 pA
 - Si: 1.07 nA

Noise and signal comparison through amplitude distribution

- 6 mV trigger (Trigger setting important)
 - To compare with values from DiamondBLM:
 - Baseline noise RMS 0.4 mV
 - Particles mean: 16.9 mV

Triggering method on oscilloscope for single particle detection

- Goal: detect all particles and no noise
- Noise level is slightly different (depending on vibrations from vacuum pump, heat of the amplifier,...) two strategies for trigger level:
 - 6 mV over all measurements to enable comparison (Downside: loss of pulses from particles)
 - Optimisation of trigger for each measurement (Downside: less comparable)
 - Solutions for future:
 - Analysing only pulses inside the spill
 - Use additional external trigger next time

- With 3.2 mV trigger level about 30 % noise
- With 4 mV trigger lower noise rate, but also less particles detected from spill

Trigger level Comparison 3.2 mV and 4 mV level

3.2 mV trigger

4 mV trigger

Diamond results Single particle

• With 4 mV trigger

- With 6 mV trigger
- Only offset different
- Plot may be used as argument to make radiation hardness tests at 4.2 K only

Diamond results 400 V Single particle detection

• Estimated: 3.79 fC

Diamond results 400 V Single particle detection

Silicon results Single particle detection

Silicon average pulses at 4.2 K and 4 mV trigger

 Again no significant difference for Si between liquid and superfluid helium

Silicon results Single particle detection

Estimated: 5.68 fC

Silicon results Single particle detection

Comparison sCVD and Si Single particle detection

In average per particle more charge from sCVD compared to Si (contradiction with estimations and DC measuremets)

Electronic setup for DC measurements

1.7 K

- Estimated charge per spill: 3.66 nC
- Apparently no efficient charge transport, due to slow mobility

CryoBLM workshop October 2011

25/35

sCVD Collected charge per spill

- Estimated charge per spill: 181 pC
- Measured about 45 pC (~ factor 4 less)
- Possible explanation for difference is slight misalignment

Beam test sCVD signal disappearing

Signal disappears after about 15 min

sCVD 10 V at 4.2 K, signal inversion and disappearing

Beam test sCVD signal inversion

Beam test Si collected charge

- Estimated charge per spill: 426 pC
- Measured about 100 pC (~ factor 4 less)
- Possible explanation for difference is slight misalignment (factor 4 for Si and sCVD strengthen this hypothesis)

Charge collection comparison Plots

Charge collection comparison between detectors

Charge collection comparison Table

• Charge from single particle in fC:

	Q _{estimated}	<q particle="" single=""></q>	Q _{spill} /n _{p normalized}
LHe	12.2	-	0.49
sCVD	3.79	7.68	0.80
Si	5.68	4.75	1.14

• Remarks:

 Number of particles (normalized to detector size) going through semiconductors not exactly known (misalignment might be major source of disagreement)

Charge ratio:

$$\frac{Q_{sCVD \, estimated}}{Q_{Si \, estimated}} \simeq \frac{Q_{sCVD \, spill \, normalized}}{Q_{Si \, spill \, normalized}}$$

 In single particle measurements some low sCVD pulses might be lost due to trigger setting

Open questions LHe

- LHe response time (rise immediately?)
- Charge per spill disagreement between estimation and measurement? (No efficient charge transport)
- LHe Ion vs electron mobility, measurable in lab?
- LHe corona discharge, measurable in lab?
- LHe purity inside cryostat? (according to theory should be nothing due to suprafluidity)
- Linearity of response with respect to beam intensity
- Saturation level

Open questions Semiconductors

- Semiconductors radiation hardness
- Semiconductors leakage current measurable at 1.9 K and 4.2 K?
- Why is charge per particle higher for sCVD than for Si, but not charge per spill?
- Pre-amplifier into the cold?
 - + very low noise
 - - feasible&working in cold with radiation and B-field?
 - more feed-throughs needed going into cryostat
- Semiconductors polarization at low temperatures (disappearing signal)
- Saturation levels

Conclusions

- All tested detectors work at superfluid helium temperatures
- Critical missing information:
 - Radiation hardness of semiconductors
 - Time response of LHe chamber
- Ongoing analysis of the beam test data
- In parallel further measurements foreseen in the laboratory:
 - Silicon (TCT) charge generation with laser and alpha source
 - sCVD (TCT) charge generation with alpha source

Acknowledgements Thank you!!!

- Vladimir Eremin for semiconductors holder and general help in many ways
- Thomas Eisel and his team for cryogenics
- Jaakko Haerkoenen for instruments, hints and discussions
- Erich Griesmayer for CIVIDEC electronics and many practical hints
- **Ewald Effinger, Jonathan Emery** and **Morad Hamani** for **discussions** on LHe chamber construction and read out
- Heinz Pernegger for analysis program and the sCVD
- Hendrik Jansen for material and discussions
- Werner Riegler for discussions on LHe chamber results
- Bernd Dehning and Mariusz Sapinski for continuous support in many ways