

Charge carrier properties in diamonds at low temperature

TCT measurements down to 60K

H. Jansen, D. Dobos, H. Pernegger / CERN PH-ADE-ID, N. Wermes /Bonn, V. Eremin /St. Petersburg

Why Diamonds

- High band-gap (5.5 eV)
	- Low leakage current after irradiation
	- High breakdown field (operate at large fields for fast signals)
- Low dielectric constant (5.7)
	- Low detector capacitance
	- $-$ Low noise
- High displacement energy (43 eV)
	- Radiation hard
- Cons: high ionization energy per eh-pair (13.6 eV)
	- Lower signal than silicon
	- $-$ ~36 e-h / micrometer path length

Microwave CVD **Plasma Reactor**

Metallization

- No doping needed M
- Metal contacts (pads, strips, pixels) $\overline{\mathbf{v}}$ sputtered or evaporated
- Can be stripped off and redone \blacksquare

polycrystalline (pCVD): Fast and short signal (~2ns FWHM) : Use for optimal double-pulse resolution

single crystal (scCVD): Fast signal with full charge collection: (~7ns FWHM) Use for best signal-to-noise on MIP muons

Radiation hardness

- Studied with pCVD and scCVD diamonds as pad, strip and pixel detectors
- E.g. Signal on scCVD pixel with FEI3 before & after irradiation (0.7x1015 p/cm2)

- PH-ADE has been active in the development of diamonds as tracking detectors since > 15 years
- Key-driver of developments in the context of LHC experiments has been the CERN RD42 collaboration
	- Better quality diamonds high charge collection distance
	- Radiation hardness
	- Development of CVD strip and pixel detectors
	- Development of CVD pad detector for beam monitoring
- Example of applications of CVD diamonds in our group
	- ATLAS Beam Conditions Monitor and BLM
	- ATLAS Diamond Pixel Detector (DBM)
	- MERIT : high flux application
	- LHC loss monitors: See Erich's talk

Development

- Developed in research collaboration between **academic collaborations** and **specialized industry**
- **RD42 collaboration**
- **ATLAS Diamond Pixel Collaboration**

ĔRN

- II-VI Incorporated, USA
- CIVIDEC, Austria

A Worldwide Leader In Engineered Materials And Components

Incorporated

Instrumentation

ATLAS Beam Conditions Monitor

- Monitor collisions and beam background simultaneously near ATLAS IP through TOF measurements
- Fast time resolution and bunch-by-bunch analysis

Fast beam monitoring with BCM

- Optimized for fast signal response for single MIPS to response details of bunch structure
	- 2 pCVD diamonds (8x8mm2 active)
	- $-$ Rise time \sim 1ns, FWHM $~23ns$
	- Time resolution ~500ps

Beam monitoring through diamond current:

• Bunch-by-bunch analysis of LHC collisions and background

- MERIT design of mercury jet target for neutrino factories or muon colliders
- High intensity (0.2 to 30x1012 proton/pulse) on free mercury jet target in 15T solenoid
- Use pCVD diamonds to measure resulting flux of particles/pulse
- 5 pCVD diamonds around target region to measure flux of secondaries and their relative distribution
- Enormous signals:
- \sim up to 5x107 part/cm2/pulse
- Diamond current signal up to 1.6 A (use attenuators, not amplifiers … !)

- Diamond response to pulse trains of PS pulses on mercury target
	- Tested different target conditions (jet velocity, magnetic field,…)
	- Tested how target gets disrupted by sudden impact of beam

• **Result**: no reduction of particle flux for bunch train operation up to 350µs suitable for operation of a 4MW proton driver at a neutrino factory

pCVD Diamond, beam-right 20deg, PS in h=16

Diamond Pixel Module

800 µm pCVD diamond 50×400(600) µm pixels 16 ATLAS FE-I3 chips active area: 61×16.5 mm2

pCVD Diamond Pixel Module

- \mathbf{C} residuals show expected behavior: 18 μ m \rightarrow unfold telescope resolution \rightarrow 14 µm as expected from 50 μ m/ $\sqrt{12}$
- \mathcal{C} 97.5% efficiency in DESY TB lower limit due to scattered tracks (4 GeV electrons)
- Excellent threshold ~ 1450 e- threshold Pixel noise \sim 136 e-)

ATLAS Diamond Beam Monitor

- Spin-off from diamond bid for IBL
- 24 diamond pixel modules arranged in 8 telescopes around interaction point
	- Bunch by bunch luminosity monitoring
	- Bunch by bunch beam spot monitoring

- Proposed during last months as add-on to IBL
- ATLAS decision expected soon

• Contingent on pixel

DBM first modules

- Four DBM modules built at IZM
	- 21x18 mm2 pCVD from DDL
	- FE-I4 ATLAS IBL pixel chip
	- $-$ 336x80 = 26880 channels, 50x250 μ m²
- Largest ASIC/diamond flip chip assembly!

- In parallel to developing, constructing and operating detector systems we focus on RD on diamonds
- **Understand basic signal collection & trapping mechanisms in diamonds**
- Measure the drift of charges through diamond bulk
- Allows to characterize charge carrier properties relevant for detector operation
	- Drift velocity, mobility
	- Charge trapping, de-trapping and lifetime
	- Field configuration

Setup – Many thanks to RD39 !

FACTS: ۰

- \rightarrow TCT in vacuum
- \rightarrow Temp: 65 K 300 K, bias \leq 600 V
- → Read-out from HV-side
- \rightarrow Use collimator (avoid edge-effects)

Energy deposition and Plasma

 \rightarrow Increased E-Field decreases lifetime of plasma

Different phase of charge drift (@295K)

H. Pernegger/CERN PH-ADE_ID Cryo-BLM mini-workshop 18/10/2011 19

Temperature dependance

H. Pernegger/CERN PH-ADE_ID Cryo-BLM mini-workshop 18/10/2011 20

Holes & Electrons

Analysis of TCT pulses

• Four phases:

- Fit Erfc(t) to rising/falling edge:
	- -50% levels mark start/end time
	- \rightarrow derive drift mobility and velocity
- Fit 1- $\exp(-t/\tau_{\rho})$ to saturation:
	- $\rightarrow \tau_{0}$ is plasma lifetime

30

• Fit $exp(-t/\tau)$ to tail: \rightarrow tail formed by cable effects, amplifier bandwidth limits, diffusion

Mobility and Drift velocity

- Mobility and velocity at RT as expected
- μ_h increases down to 67 K
	- \rightarrow no onset of impurity scattering
- V_{sat} ~ constant with temperature

Integrated Charge

- Charge constant in range 140 K to 300 K ۰
- Steep drop from 140K down to 67 K
	- \rightarrow trapping and recombination

What can explain signal reduction and tail? (speculation!)

from Ramo-Theorem:

 $i_{(t)} = i_{non-trapped}(t) + i_{released}(t)$

 $=\sum_i \frac{q_{\text{not-trapped}}}{d} v(t-t_i^{\text{start}})$

 $+\sum_i \frac{q_{released}}{d} v(t-t_i^{detap});$

 $Q_{relosed}(t) =$

 $Q_{trapped}(1-\exp(-t/\tau_{detrap}))$;

• Trapping and De-trapping at low temperatures

Below ~150 K:

- field-free region within plasma cloud \rightarrow immediate trapping and increased recombination
- Detrapping if E_{trap} / kT large enough
- Distinguish 2 types of trapping!

$$
\boxed{\text{CERN}}
$$

Detrapping at 80K

- For beam monitoring energy deposition is significantly lower than alpha's ionization density, therefore only the trapping/detrapping **during drift** is relevant (**no plasma**).
- This is consistent with the fact that we see nice testbeam pulses at 2K (see Christoph's talk)
- **Investigate charge trap levels**: have carried out **TSC measurements** in Florence (Many thanks to Mara Bruzzi, R. Mori. M. Scaringella!) – Analysis of data is on-going
- Next step: measure signal with **MIP equivalent +** Integrator electronics as function of temperature

- Very preliminary !
- Measurements at 295K,150K,67K with Cosmics (MIP) and integrator
- No sign of charge loss at low temperatures

- Diamonds have a good track record as beam monitors in applications from single –particles to very high flux
- They are compact enough for a Cryo-BLM
- Diamonds are (relatively) easy to operate and reliable in operation (">10 years locked away)
- The possible application of diamonds as beam loss monitors at 2K at LHC sparked our interest to investigate their behaviour at low temperatures in collaboration with Bernd & Erich & Christoph

