Physics of semiconductor detectors operation at low temperatures

Vladimir Eremin

Ioffe Physico - technical institute Saint Petersburg

Outline

- 1. General on semiconductor detectors
- 2. S/B and P-I-N detectors
- 3. Radiation effect in detectors
- 4. Diamond properties
- 5. Trapping time degradation in Diamond and Silicon
- 6. Signal amplitude in Diamond and Silicon detectors
- 7. Conclusions

Back ground of PTI group which has been used in this presentation

Ferformed R&Ds supported by international grants

CAST: R&D of Transient Current Technique for radiation hard detectors study (BNL).
ISTC: R&D of silicon detectors array for medical application (USA, for-profit company)
INTAS: R&D of radiation hard cryogenic silicon detectors (CERN-RD39 collaboration).
INTAS: R&D of silicon strip detectors for ATLAS upgrade (CERN-ATLAS).
INTAS: R&D of radiation hard edgeless detectors for TOTEM (CERN-TOTEM).
INTAS: R&D of spectrometric DSSDs for EXL (NuSTAR, FAIR).

Development and Fabrication of Si detectors in the frame of international projects

- **Current injected detectors** for CERN-RD39 collaboration.
- P-on-N detectors for "TECHNOTEST" project of CERN-RD50 collaboration
- Reference P-on-N baby detectors for CERN-ATLAS strip detectors QA.
- Full set of edgeless detectors for CERN-TOTEM experiment.
- New : pre-series run of radiation hard silicon edgeless detectors for CERN-TOTEM upgrade.
- Si strip spectrometric detectors for NuSTAR experiment in FAIR program (GSI)

Si planar detector, static

Si PAD detector response

TCT data (830 nm laser)

Fig. 9. A set of current pulses before and after depletion voltage for a deep level free detector: non-equilibrium carriers are generated (a) near the front p^+ -contact (drift of electrons); (b) near the back n^+ -contact (drift of holes).

Effect of irradiation on detector

Primary defects (Frenkel pairs): vacancy (V) and interstitial (I)

Secondary defects: Divacancy - V + V A center - V + O E center - V + P

Life time degradation in Si

Electric field evolution in Si detectors with fluence (simple model)

Basic formulas

Charge Collection Distance (CCD)

$$CCD = V_{dr} \times \tau_{tr}$$

• Trapping time

$$\tau_{tr} = (\sigma \times V_{th} \times N_{tr})^{-1}$$

• Detrapping time

$$\tau_{dtr} = [(\sigma \times V_{th} \times N_c \times \exp(-E_{act}/kT)]^{-1}$$

• Width of the depleted layer in P-N junction

$$W = \left(\frac{\varepsilon\varepsilon_o \cdot V}{2\pi q_e^2 N_{eff}}\right)^{\frac{1}{2}}$$

Comparison of Surface-barrier and P-I-N detectors

S/B detector or M-S-M

P-I-N

Electric field and potential at the detector entrance window

V, Eremin, PTI, BLM, Oct 2011

Comparison of S/B and P-I-N detectors

S/B

- Hardly controlled surface properties,
- Low reproducibility of S/B contact,
- Complicate technology,
- Oxidized surface or damaged interface prevents charge flow from the bulk to metal contact,
- High probability for charge accumulation at the interface and detector polarization,
- Unpredictable scenario of long term detector stability,
- Problem for operation at high current density,
- Optimal for low T operation in case the mentioned above problems will be solved.

P-I-N

- Reproducible technology,
- Smooth transition between bulk and me contact
- No interface between Si and Metal contact
- No chance accumulate charge at the surface
- No polarization,
- Requires more study for low T operation mainly for highly doped regions.

Band diagram for Diamond

Band diagram depends in the crystal axes – anisotropy of parameters is expected

Mobility in natural diamond

Anisotropy of drift velocity

electrons

holes

Drift velocity in modern Diamond

V, Eremin, PTI, BLM, Oct 2011

Deep levels in CVD diamond

• INFN - Florence) model

Proofed by :thermal stimulated current measurements – TSC and PICTS

Photoconductivity measurements

Mid gap acceptor: MGA (2.7eV)

Donor: DD (0.87eV)

Acceptors: DA1(0.78eV), DA2 (0.81eV)

Valence band: (0 eV)

What does this model define ??

<u>Trends in the improvement of CVD diamond</u> <u>technology</u>

DL's concentration

Years	1998	2000
MGA , cm-3	5x10 ¹⁵	2.5x10 ¹⁵
DD , cm-3	5x10 ¹⁵	2.5x10 ¹⁵
DA1 , cm-3	3x10 ¹⁴	4x10 ¹³
DA2 , cm-3	6x10 ¹³	2x10 ¹³

Bulk diamond parameters

E _f , e∨	0.935	0.964	
n , cm ⁻³	1.84x10 ⁻⁵⁷	5.8x10 ⁻⁵⁷	
p , cm ⁻³	8.61x10 ²	2.68x10 ²	
ρ , Ohm cm	4x10 ¹²	1.27x10 ¹³	
+N_{tr} (e), cm-3	3.57x10 ¹⁴	5.99x10 ¹³	
-N_{tr} (h), cm-3	3.58x10 ¹⁴	5.99x10 ¹³	
N _{tr} eff, cm-3	7.15x10 ¹⁴	1.2x10 ¹⁴	

- Diamond is a p-type semiconductor
- Purification leads to:
 - ✓ Decrease of Fermi livel
 - ✓ Increase of resistivity
 - ✓Increase of trapping

V, Eremin, PTI, BLM, Oct 2011

Trapping in irradiated Si and Diamond

From:

W.Trischuk & RD42, Resent advanses in diamond detectors

Conclusion: Trapping time degradation rate: Silicon β = 2e-7 cm²/s Diamond β = 7.5e-7 cm²/s

Conditions for comparison: Electric field 1V/um Diamond SC and PC Silicon MC Diamond irradiated by protons 24GeV Silicon irradiated by protons 24GeV

CCD = Vdr*T T ~ 1/Ntr Ntr ~ F

Absolute signal in Si and Diamond PAD detectors (trapping time degradation effect)

From "Fast beam conditions monitoring (BCM1F) for CMS" by N/Bernardino Rodriguess, ...

sc-Diamond, 480um at Fp=1.75e15 1/cm2 Qcoll (S1) = 2900e and Qcoll (S2) = 4130e !!! Expected > 10000e

Parameters

Uniform electric field temperature - 290K d(1/tau)/dF silicon - 2e-7[s^-1*cm^2] d(1/tau)/dF diamond - 7.5e-8[s^-1*cm^2]

Current response of pad semiconductor detector (MIPs)

MIP current response for Si detector

Detector thickness - 300 um MIP detection (Laser 1060 nm) Rise time - 600 ps (defined by electronics) Expected time resolution <100 pc

Si and Diamond

Parameter		Silicon	pc-Diamond	sc-Diamond
Z		14	6	6
Α		28.1	12	12
Density		2.329	3.515	3.515
Bend width, eV		1.12	5.48	5.48
Pair creation energy, eV		3.63	13.1	13.1
Permittivity		11.9	5.7	5.7
Resistivity, kOhm cm		<100	>1e10	>1e10
Drift mobility, cm^2/V/s	h	505	1000	2400
	е	1450	1800	1900
Saturation velocity, cm/s	h	8.4e6	1e7 ?	
	е	1e7	2e7 ?	
MIP pair generation density, cm-1		0.9e6	0.36e6	
MIP response amplitude, A		1.5e-6	1e-6	
Life/trapping time, ns		1e7	1 – 10	40
Charge collection distance, um		100000	< 200	> 500

Conclusions

- 1. Many physical parameters for Diamond are still not precisely defined: Vdr, mobility, Vs, trapping related parameters.
- 2. Shallow level impurities are not discovered for Diamond that makes impossible fabricate P-i-N structures.
- 3. Trapping time degradation is much less then for Silicon however the high density of defects and impurities limits the trapping time at the level equivalent of of flence >1e15 p/cm^2
- 4. Polarization could be a major unpredictable factor of Diamond detector operation in DC current mode at low temperatures.

Thank you for your attention