Higgs Results from the Tevatron

Gregorio Bernardi,
LPNHE Paris
On behalf of CDF and DZero
January 9th 2012

Thanks to all CDF & DZero colleagues
• The Tevatron, status and performance
• Searching for the Higgs @ Tevatron
• High mass Higgs exclusions
• Low mass Higgs searches
• Validation using diboson to HF processes
• Combinations of Standard Model searches
• Prospects
Tevatron Luminosity

Analysed data set:

- CDF: 7.5–7.9 fb⁻¹
- DØ: 8.5–8.6 fb⁻¹

Recorded data up to March 2011

19 April 2002 - 30 September 2011

Thanks to the Tevatron Accelerator Group for such a performance!
CDF and DØ Detectors

- General purpose detectors
- Good hermeticity
- Mature algorithms
- Well understood under all pile-up conditions

Rapidity coverage

<table>
<thead>
<tr>
<th></th>
<th>CDF</th>
<th>Dzero</th>
</tr>
</thead>
<tbody>
<tr>
<td>Track</td>
<td>2.0</td>
<td>2.5</td>
</tr>
<tr>
<td>Calorimeter</td>
<td>3.6</td>
<td>4.2</td>
</tr>
<tr>
<td>Muon</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>B-field</td>
<td>1.4 T</td>
<td>2.0 T</td>
</tr>
</tbody>
</table>
Higgs Production and Decay at the Tevatron

“High” mass ($m_H > 135$ GeV) dominant decay:

\[H \rightarrow WW^{(*)} \quad gg \rightarrow H \rightarrow WW \rightarrow \ell \nu \ell' \nu' \]

Low mass ($m_H < 135$ GeV) dominant decay:

\[H \rightarrow bb \]

\[WH \rightarrow \ell \nu b \bar{b} \]

\[ZH \rightarrow \ell^+ \ell^- b \bar{b} \]

\[ZH \rightarrow \nu \bar{\nu} b \bar{b} \]

Use associated production modes to get better S/B

These are the main search channels, but there is an extensive program of measurement in other channels to extend the SM (and BSM) sensitivities.
What did we learn in 2011 on SM Higgs?

Tevatron had already shown in 2010 that the “high mass” part of the electroweak-favored range is excluded \Rightarrow SM Higgs between ~ 115 and ~ 150 GeV.

In summer, LHC confirmed and extended these limits, also starting to confirm directly that higher masses (> 180 GeV) are not possible for SM Higgs (work to be completed with more LHC luminosity). In December, further reduction presented by the LHC of the allowed SM range.

\Rightarrow SM Higgs if it exists has a low mass and is in a region where its Branching Ratios vary rapidly as a function of its mass.

Challenge: we need to combine all decay modes to find it, but we also need individual measurements to identify it as the SM Higgs boson!

\Rightarrow Remind Tevatron strategy, starting from the high mass channels, then moving to the $H \rightarrow bb$ search, where Tevatron has strong capabilities.
Optimize all channels individually, based on production and decay properties.

Select inclusive candidate samples maximizing acceptance to potential Higgs signals (different masses probed)

Separate further these channels into multiple analysis sub-channels of different S/B, to improve the sensitivity.

Model all backgrounds using simulation and data, with detailed verifications on independent control regions in data

Use advanced multivariate analysis tools to separate signal from background based on the full event kinematics (tested on data)

Derive systematic uncertainties from independent measurements, both in normalization and on the shape of their distributions.

Use two standard statistical approaches and constrain the systematic uncertainties to the data, to obtain the best search results.
Other non SM Higgs searches

Tevatron combination: 95% C.L. exclusion for a Fermiophobic Higgs boson with mass m_H below 119 GeV/c^2.
Results: Limits

95% C.L. Mass-Dependent Cross Section Limits

- **DØ**: observe ~2.5σ deviation at ~120 GeV for narrow-width case [after trial factors, significance of ~2.0σ]

- **CDF**: deviation at ~150 GeV, with p-value = 0.23% (~2.8σ) [trial factors, 1.9σ significance to observe such an excess at any masses]

- **General limits applicable to any narrow scalar with bb final states produced in association with b-jet**

Gregorio Bernardi / LPNHE-Paris
SM Higgs Event Yield expectation

Expected number of events available for selection to CDF + DZero at the end of Tevatron running (10 fb⁻¹)

<table>
<thead>
<tr>
<th>Higgs Mass</th>
<th>WH→lνbb</th>
<th>ZH→ννbb</th>
<th>ZH→lνbb</th>
<th>H→WW→lνlν</th>
</tr>
</thead>
<tbody>
<tr>
<td>120 GeV</td>
<td>~500</td>
<td>~240</td>
<td>~80</td>
<td>~260</td>
</tr>
<tr>
<td>135 GeV</td>
<td>~200</td>
<td>~100</td>
<td>~40</td>
<td>~520</td>
</tr>
<tr>
<td>150 GeV</td>
<td>~60</td>
<td>~40</td>
<td>~20</td>
<td>~640</td>
</tr>
</tbody>
</table>

But: reconstruction/selection/tagging efficiencies is
~ 10% in H→bb channels
~ 25% in H→WW channels
(N.B.: lνbb can appear as “ννbb” events in the experimental final states)
Maximizing Sensitivity in $H \rightarrow WW \rightarrow l\nu l\nu$

search sensitivity optimized by dividing events into multiple analysis channels

use separate, optimized discriminants for each channel based on
 - specific signal contributions
 - specific background contributions
 - specific event kinematics

Collect as many Higgs events as possible:
 - both CDF and D0 include events with same-sign leptons, events with hadronic tau candidates, W hadronic decay modes (D0)
• Need to separate small potential signal from large SM background contributions in our search channels
• After inclusive selection \(S/B \approx 0.02 \) in the most sensitive search channels

→ Need to model well ALL backgrounds
• Define specific control regions to test modeling for each individual background (whenever possible)

• In the case of dibosons (WW/Z, ZZ) there are no control regions so we measure them to check their modeling
• If the MC modeling is insufficient, we do additional tunings (based on data)
Diboson cross section measurements are based on the same tools and data samples used for the $\text{H} \rightarrow \text{WW} \rightarrow l\ell l\nu$ search.

$\text{WW} \rightarrow l\ell l\nu : \sigma(\text{WW}) = 12.1^{+1.8}_{-1.7} \text{ pb}$

$\text{ZZ} \rightarrow l\ell l\nu : \sigma(\text{ZZ}) = 1.5^{+0.6}_{-0.5} \text{ pb}$

$\text{NLO QCD: } \sigma(\text{WW}) = 12.4^{+0.8}_{-0.8} \text{ pb}$

$\text{NLO QCD: } \sigma(\text{ZZ}) = 1.4^{+0.1}_{-0.1} \text{ pb}$

$b\bar{b}$ final states are analyzed separately
Final/Intermediate Discriminants

MVA (neural networks, boosted decision trees..) provide a gain of ~20% in sensitivity beyond that obtained from optimized, cut-based analysis.

Several layers of MVA discriminants are used in some cases to reduce large background contained within inclusive candidate samples. Example: DY@D0: $H \rightarrow WW \rightarrow \mu\nu\mu\nu$ channel
Systematic Uncertainties

- We consider uncertainties both on the overall normalization of each signal/background process and on the shapes of the final discriminant templates for each signal or background process.

- In the limit-setting procedure systematics are included as nuisance parameters, taking into account the correlations between different channels, and between experiments when needed (background cross sections for instance).

Using this approach we are able to further constrain our background uncertainties directly from the data.
Since we combine searches focusing on different Higgs production and decay modes, cross section limits are given with respect to nominal SM predictions

we incorporate theoretical predictions and uncertainties for signal cross sections and branching ratios when deriving our results (we follow prescriptions from “LHC Higgs cross section working group”)

Adapt in each iteration to reflect recent theoretical developments: we now include updated uncertainties for H→WW search in jet multiplicity bins

Limits are derived using Bayesian and CLs methods

<table>
<thead>
<tr>
<th>Channel</th>
<th>Scale 0</th>
<th>Scale 1</th>
<th>Scale 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 jet</td>
<td>13.4%</td>
<td>-23.0%</td>
<td>-</td>
</tr>
<tr>
<td>1 jet</td>
<td>-</td>
<td>35.0%</td>
<td>-12.7%</td>
</tr>
<tr>
<td>2+ jets</td>
<td>-</td>
<td>-</td>
<td>33.0%</td>
</tr>
</tbody>
</table>
CDF/D0 $H \rightarrow WW \rightarrow l\nu l\nu$ Limits

Both experiments exclude SM Higgs boson around 165 GeV \Rightarrow combined yield:

No sign of Higgs here, let’s move to low mass!
Very small BR in SM, clean signature
Main challenge is instrumental background (fakes)
Data-driven methods for both CDF and D0 to estimate background from jets faking photons
Use of multivariate methods for background estimation and final discriminants
Now completely superseded by LHC.
Low Mass Higgs Channels

WH→lvbb: MET+l+bb
Large production cross section
Higher backgrounds than in ZH→llbb

ZH→lvbb: ll+bb
Low background
Fully constrained
Small Signal

ZH→vvbb: MET+bb
3xsignal of ZH→llbb
(+ contributions from WH)
difficult backgrounds
W boson Reconstruction in WH

Lepton:
electron/ muon \(p_T > 15 \text{ GeV} \)

Missing \(E_T \):
\(E_T > 15 \) (20) GeV for electron (muon).

Multi-Jet Background is estimated from Data.

Gregorio Bernardi / LPNHE-Paris
Backgrounds at low mass

- **Instrumental** backgrounds QCD multijet (e.g. faking lepton) Derived from (sidebands) data.
Backgrounds at low mass

- Instrumental backgrounds QCD multijet (e.g. faking lepton) Derived from (sidebands) data

- Physics backgrounds $W/Z+$jets with real / misidentified heavy flavour
Backgrounds at low mass

- Instrumental backgrounds QCD multijet (e.g. faking lepton) Derived from (sidebands) data
- Physics backgrounds W/Z+jets with real / misidentified heavy flavour
- Dibosons
Backgrounds at low mass

- Instrumental backgrounds QCD multijet (e.g. faking lepton) Derived from (sidebands) data
- Physics backgrounds W/Z+jets with real / misidentified heavy flavour
- Dibosons
- $t\bar{t}$ and Single Top
Increase lepton reconstruction and selection efficiencies

Understand background

Specific to low mass analyses:

B-tagging (next slides)

Optimize dijet mass resolution
\implies needs precise calibration and resolution for gluon and quark jets separately
\implies new techniques explored (NN, tracks + calorimeter cells) we are not done yet!

Optimize dijet mass resolution with Kinematic fit in $ZH \rightarrow l\nu bb$ (15% sensitivity gain)
Low Mass Higgs Searches

- Reduce the background by tagging b-quark jets
- separate b, light, next separate b from c with dedicated algorithm
- Improve the efficiency for tagging b-quark jets

- separate b, c, light.

Still need to go beyond simple selection approach ⇒ Multivariate analysis

Double b-tagged events
From Dijet mass to Multi Variate Analysis

- To improve S/B ➔ utilize full kinematic event information

- Multi Variate Analyses
 - Neural Networks
 - Boosted Decision Trees

Or use Matrix Element Calculations to determine probability for an event to be signal or background like

- Approaches validated in Single Top observation.
- Combine these approaches

- Visible gain obtained (~20% in sensitivity)
Results from DØ

ZH→llbb \(\bar{\ell} \ell bb \) \(\bar{\ell} l dt=8.6 \text{ fb}^{-1} \)

WH→lvbb \(l \bar{\nu} bb \) \(\bar{\ell} l dt=8.5 \text{ fb}^{-1} \)

ZH→vvbb \(v \bar{v} bb \) \(\bar{\ell} l dt=8.4 \text{ fb}^{-1} \)

95% CL Exp (obs) Limit \(4.8 \ (4.9) \times \text{SM} \) @ MH=115 GeV

95% CL Exp (obs) Limit \(3.5 \ (4.6) \times \text{SM} \) @ MH=115 GeV

95% CL Exp (obs) Limit \(4.0 \ (3.2) \times \text{SM} \) @ MH=115 GeV

\~10\% gain on intrinsic sensitivity compared to 2010 result (i.e. on top of gain due to luminosity)

Gregorio Bernardi / LPNHE-Paris
Results from CDF

ZH→llbb \[\mathcal{L}_{\text{dt}}=7.9 \text{ fb}^{-1}\]

WH→lvbb \[\mathcal{L}_{\text{dt}}=7.5 \text{ fb}^{-1}\]

ZH→vvbb \[\mathcal{L}_{\text{dt}}=7.8 \text{ fb}^{-1}\]

95% CL Exp (obs)
Limit \(3.9 (4.8)\) \times SM @ MH=115 GeV

20% gain on sensitivity

Gregorio Bernardi / LPNHE-Paris
Are these methods trustable?

- Procedure reminder:
Cross check on Diboson process

- Benchmark of $H \rightarrow bb$ searches with real data.
- $VZ \rightarrow$ leptons + heavy flavor jets

For $m_H = 115$ GeV

- $WH \rightarrow l\nu bb$: $\sigma = 26$ fb
- $ZH \rightarrow \nu\bar{\nu} bb$: $\sigma = 15$ fb
- $ZH \rightarrow l\bar{l} bb$: $\sigma = 5$ fb

Total VH: $\sigma = 46$ fb

Replace H with Z

- $WZ \rightarrow l\nu bb$: $\sigma = 105$ fb
- $ZZ \rightarrow \nu\bar{\nu} bb$: $\sigma = 81$ fb
- $ZZ \rightarrow l\bar{l} bb$: $\sigma = 27$ fb

Total VZ: $\sigma = 213$ fb

$Z \rightarrow bb$ yields is 5 times larger, but much more W+jets backgrounds, and also background from WW.

- Apply similar analysis as low mass $H \rightarrow bb$ analysis, and check sensitivity.

- Note that such a benchmark does not exist for gamma-gamma (for ZZ neither, but background is smaller, so less crucial).
Benchmarks at LHC?

Inclusive diphoton sample
- Data 2011
- Background model
- SM Higgs boson \(m_H = 120 \text{ GeV} \) (MC)

\[\sqrt{s} = 7 \text{ TeV}, \int \text{Ldt} = 4.9 \text{ fb}^{-1} \]

ATLAS Preliminary

Gregorio Bernardi / LPNHE-Paris
Benchmarks at LHC?

H → γγ: data and exclusion limits

- **CMS preliminary**
 - $\sqrt{s} = 7$ TeV $L = 4.76$ fb$^{-1}$
 - All CategoriesCombined

Using 5th order polynomial fit to background: some loss in sensitivity but negligible bias.

A lot of studies on the background fit model. Is the structure/shape of the observed limit due to the chosen background model? No – this has been shown to not be the case.
Benchmarks at LHC?

Issues of precise calibration are crucial \(\Rightarrow\) diboson benchmark at Tevatron simplify this issue
Benchmarks at TeV: Dibosons to H.F.

Diboson lvbb

Diboson llbb

Diboson vvbb

Background Subtracted Distribution
Diboson Combination

- Combining all three channels
- Maintaining proper correlation among channels
- Keeping WW as background, \(\Rightarrow \) Evidence for WZ/ZZ decaying to H.F.
 Good energy calibration

\[3.3\sigma \text{ Evidence (exp. } 2.9\sigma) \]

\(\Rightarrow \) If there is a light SM Higgs, we should “see” it!
Combining Channels

Best sensitivity → combination of many independent search channels

Other analyzed channels are listed here below:

- WH → lvbb
- ZH → vvbb
- ZH → llbb
- WH/ZH → jjbb
- ttH → WbWbb
- H → γγ
- H → ττ
- WH → lvττ / ZH → llττ
- H → WW → lvlv
- H → WW → lvjj
- WH → WWW / ZH → ZWW
- H → ZZ

CDF Run II Preliminary, L ≤ 8.2 fb⁻¹

95% CL Limit/SM

Gregorio Bernardi / LPNHE-Paris
CDF/D0 Limits

Similar shapes: small deficit below 115 GeV, small but broad excess around 130 GeV, exclusion around 160 GeV
Summer 2011 Tevatron Combination

Tevatron Run II Preliminary, $L \leq 8.6$ fb$^{-1}$

- **LEP Exclusion**
- **Tevatron Exclusion**

- **Exclusion** $100 \leq m_H \leq 108$ GeV
- **Exclusion** $157 \leq m_H \leq 177$ GeV

- **SM Prediction**
- **Observed Sensitivity**
- **Expected Sensitivity**

Gregorio Bernardi / LPNHE-Paris
S+B versus B-only Hypotheses

excess around 125-130 GeV consistent with SM Higgs but with ~ 1.3 sigma expected sensitivity
Combined Discriminants

$m_H = 140 \text{ GeV}$

$m_H = 115 \text{ GeV}$
- $H \rightarrow bb$ channel provides best sensitivity in the mass region just above the LEP bounds.
- Evidence/observation of this decay mode is important for establishing that a Higgs-like signal found in other channels is in fact the SM Higgs. It will be best done at the Tevatron, at least until 2014 running.
Combined Low Mass Limits

Tevatron Run II Preliminary $H \rightarrow bb$ Combination, $L \leq 8.6$ fb$^{-1}$

CDF & DØ $H \rightarrow bb$ combination

CMS
LEP
ATLAS

July 17, 2011

95% CL Limit/SM

10

1

100 105 110 115 120 125 130 135 140 145 150

m_H (GeV/c2)
Tevatron Combination

Tevatron Run II Preliminary, $L \leq 8.6 \text{ fb}^{-1}$

Just for illustration

Non official "drawing"

Gregorio Bernardi / LPNHE-Paris
Continue to make improvements over a wide range of areas

- Better control of systematics
- Proper understanding of all backgrounds (Top, EW, QCD)
- Signal acceptance
- Improved analysis techniques
- Lepton efficiency/acceptance
- B-tagging
- Mass resolution
Sensitivity Gains Prospects

- With analysis improvements, we continue to progress significantly in sensitivity, beyond that expected from simply adding more data.
- CDF/DZero working to deliver Higgs search results at Moriond based on the full 10 fb\(^{-1}\) datasets that achieve our expected sensitivity goals. D0 also reprocessing full dataset to provide further improvements (>summer ‘12).
- The Tevatron aims at reaching >95% C.L. exclusion sensitivity over the entire Higgs mass range (100 - 185 GeV), better @115 GeV.

Gregorio Bernardi / LPNHE-Paris
Rumors of my death are greatly exaggerated
Conclusions and Outlook

Tevatron exclusion has been extended at high mass, but small excess around 130-140 GeV prevents realizing expected exclusion ;)

Tevatron is reaching exclusion sensitivity at lowest mass (∼115 GeV) and validated this sensitivity on data with dibosons to heavy flavor.

10 fb⁻¹ of data will be analyzed by Moriond 2012, not the final word.

On track to reach 95% CL exclusion sensitivity over expected m_H range, i.e. from 100 to 185 GeV

Best sensitivity to H→bb, →Tevatron will remain complementary to LHC at least until 14 TeV Run

We are fast progressing on one of the most central questions in HEP: How is EWSB happening? Is there a SM Higgs Boson?