Combinations of SM Higgs searches at the LHC and Tevatron:

Information lost ... but not forgotten

> Ben Kilminster Fermilab

Zurich 2012 Higgs confrontation workshop January 9, 2012



Organization with > 1000 Short online talks on ideas worth spreading



Murray Gell-Mann on beauty and truth in physics 16:02 Posted: Dec 2007 Views 399,109 | Comments 112

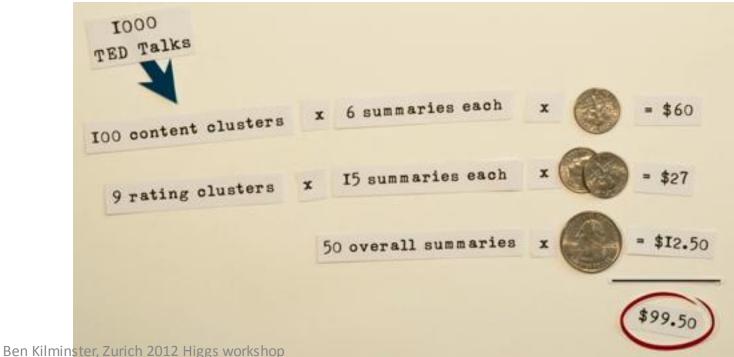


Frederick Balagadde: Bio-lab on a microchip 06:11 Posted: Apr 2010 Views: 102,507 | Comments: 39

Rated: Ingenious Inspiring ...

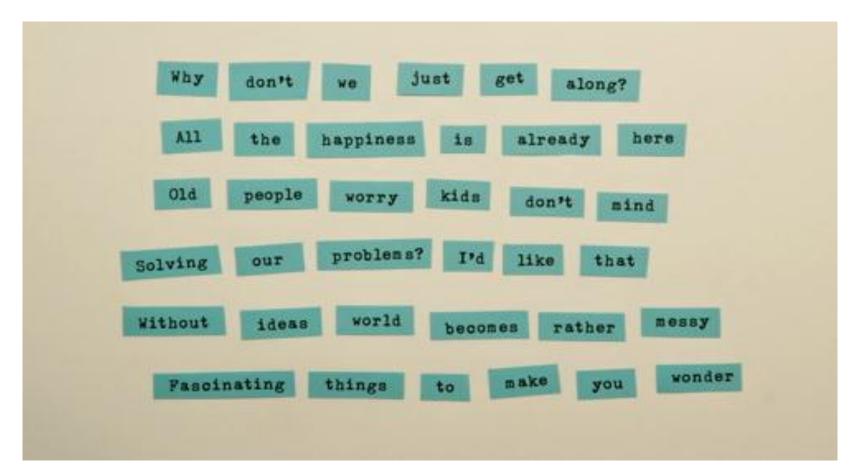


Nathan Myhrvold: Could this laser zap malaria? 16:58 Posted: May 2010 Views: 292,513 | Comments: 303


Rated: Ingenious Jaw-dropping ...



David Bolinsky animates a cell 09:45 Posted: Jul 2007 Views 671,878 | Comments 178


## Ted x Zürich, Oct. 2011

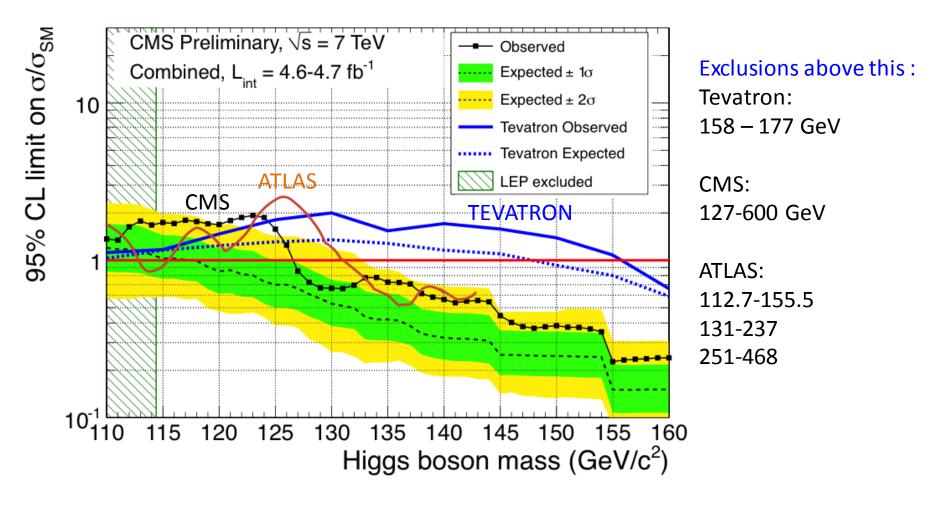
- Sebastian Wernicke
  - Leader in field of bioinformatics
  - Used Mechanical Turk website to hire people to do Human Intelligence Tasks for 10 cents each
  - 1000 Ted Talks, each ~2300 words, summarized to 6 words for \$100



#### Ted x Zürich, Oct. 2011

Six of the fifty 6-word summaries of all 1000 Ted Talks




#### Ted x Zürich, Oct. 2011

Still not satisfied, he chose these 6 final words

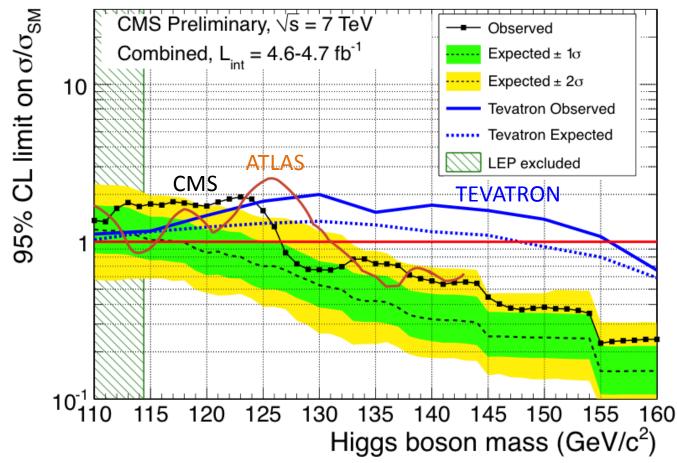


#### Information is clearly lost 😳

#### Physicists summarize with a picture



Caveat : cost >> \$100


#### Except ...

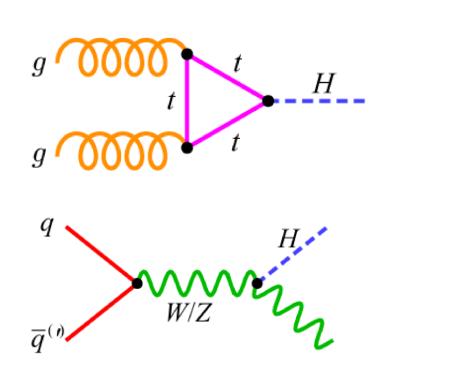
• None of us here accept a single picture as the answer without considering its components

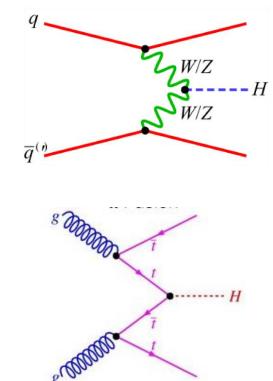
#### Specifically for our Higgs picture

- What goes into TeV & LHC limits ?
- What are all the pieces ?
- How does it all fit together ?
- What are the assumptions ?
  - How important are they to the conclusion ?
- How do we define excesses and deficits ?
   What do they tell us ?
- To what degree is it a consistent picture ?

## Or in 6 words ... How much information does picture lose ?







## **Higgs production**

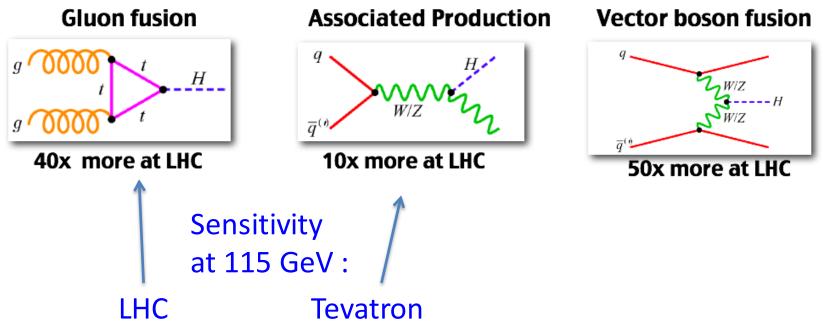
Ben Kilminster, Zurich 2012 Higgs workshop

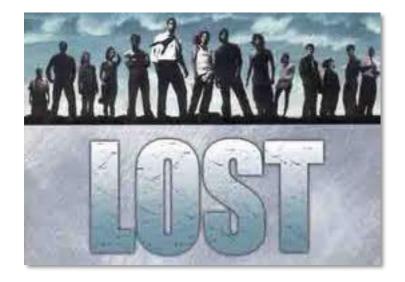
## Actually searching for four production modes

 Picture uses single multiplier μ of the SM crosssections for four different Higgs productions






#### **Higgs Production in combinations**


| Production                                | LEP | Tevatron | LHC |
|-------------------------------------------|-----|----------|-----|
| $qq \rightarrow Z^* \rightarrow ZH$       |     |          |     |
| $qq \rightarrow W^* \rightarrow WH$       |     |          |     |
| gg → H                                    |     |          |     |
| $qq \rightarrow WW/ZZ qq \rightarrow Hqq$ |     |          |     |
| $gg \rightarrow tttt \rightarrow ttH$     |     |          |     |

#### Tevatron vs. LHC

- LHC has higher cross-sections for signal
  - But scaling is not the same
  - Different production cocktail between

accelerators





## Higgs production uncertainties

## Each Higgs production also comes with different relative uncertainties

#### At LHC

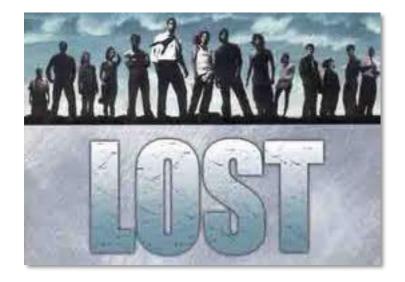
| Affected Processes                                        |                                                                                                                                                                                                                                                                                                                                                                       | Typical uncertainty                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $gg \to H,  t\bar{t}H,  gg \to VV$                        |                                                                                                                                                                                                                                                                                                                                                                       | ±8%                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| VBF $H, VH, VV$ @NLO                                      |                                                                                                                                                                                                                                                                                                                                                                       | ±4 %                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| total inclusive $gg \to H$                                |                                                                                                                                                                                                                                                                                                                                                                       | $^{+12\%}_{-7\%}$                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| inclusive " $gg$ " $\rightarrow$ $H + \geq 1$ jets Corre  | lated between all                                                                                                                                                                                                                                                                                                                                                     | $\pm 20\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| inclusive " $gg$ " $\rightarrow H + \geq 2$ jets channels | nels and each                                                                                                                                                                                                                                                                                                                                                         | $\pm 20\%$ (NLO), $\pm 70\%$ (LO)                                                                                                                                                                                                                                                                                                                                                                                                                              |
| VBF H exper                                               | iment                                                                                                                                                                                                                                                                                                                                                                 | ±1%                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| associated VH                                             | experiment                                                                                                                                                                                                                                                                                                                                                            | $\pm 1\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $t\bar{t}H$                                               |                                                                                                                                                                                                                                                                                                                                                                       | $^{+4\%}_{-10\%}$                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| uncertainties specific to high mass Higgs bos             | $\pm 30\%$                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                           | $\begin{array}{ll} gg \rightarrow H,  t \overline{t} H,  gg \rightarrow VV \\ \text{VBF } H,  VH,  VV @ \text{NLO} \\ \text{total inclusive } gg \rightarrow H \\ \text{inclusive } "gg" \rightarrow H + \geq 1 \text{ jets} \\ \text{inclusive } "gg" \rightarrow H + \geq 2 \text{ jets} \\ \text{VBF } H \\ \text{associated } VH \\ t \overline{t} H \end{array}$ | $\begin{array}{ll} gg \rightarrow H,  t\bar{t}H,  gg \rightarrow VV \\ \text{VBF } H,  VH,  VV @ \text{NLO} \\ \text{total inclusive } gg \rightarrow H \\ \text{inclusive } "gg" \rightarrow H + \geq 1 \text{ jets} \\ \text{inclusive } "gg" \rightarrow H + \geq 2 \text{ jets} \\ \text{VBF } H \\ \text{associated } VH \end{array} \qquad \begin{array}{ll} \text{Correlated between all} \\ \text{channels and each} \\ \text{experiment} \end{array}$ |

gg → H uncertainties are largest despite tremendous set of calculations :

QCD radiative corrections at NLO

QCD corrections NNLO

QCD soft-gluon resummation NNLL


**EWK corrections NLO** 

top and bottom loop corrections up NLO

above 400 GeV, line shape unknown

Ben Kilminster, Zurich 2012 Higgs workshop

Details & references in CMS+ATLAS combination note

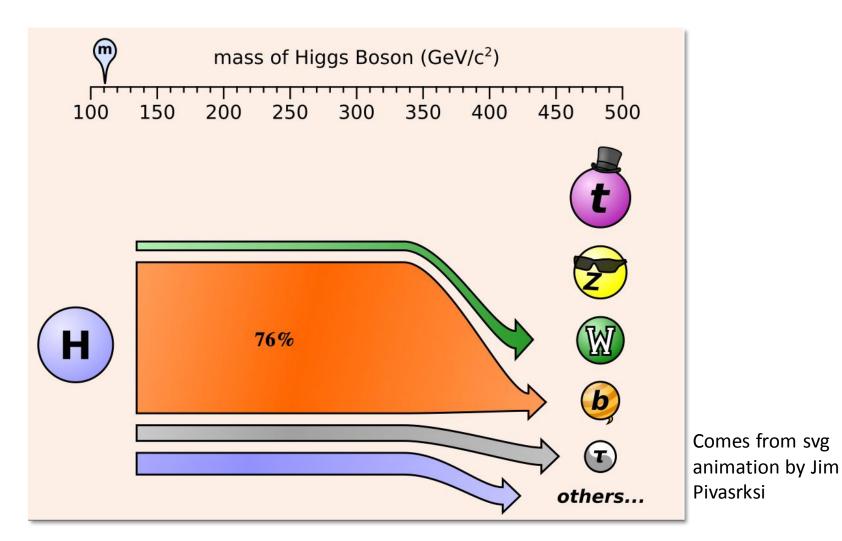


# Higgs exclusive production uncertainties

#### Production modes have exclusive uncertainties

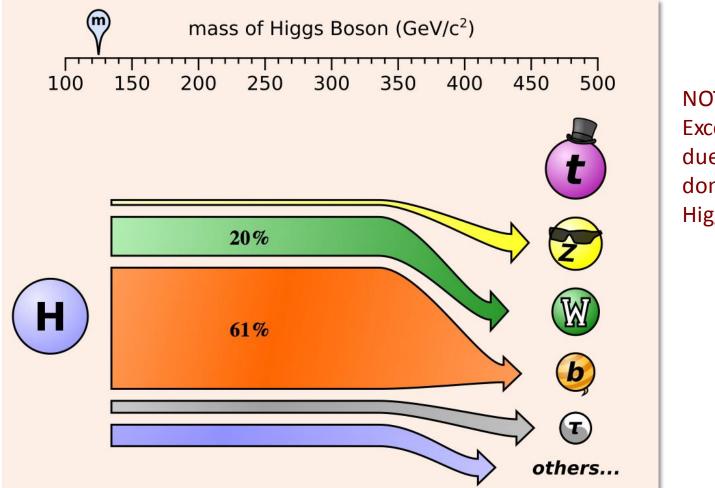
- Splitting H→WW by number of jets
  - Different PDF+ $\alpha_s$  and scale errors for each jet-bin
    - PDF errors from Anastasiou et al,. JHEP 0908, 099 (2009)
  - Treat scale uncertainty of NNLO+NNLL inclusive, but NLO 1+ jet, 2+jet bins as uncorrelated
    - Berger et al., arXiv:1012.4480, Stewart and Tackman, arXiv:1107:2217
      - 3 scales Tackmann et al., arXiv:1107.2217 [hep-ph]  $\rightarrow$  3 nuisance parameters
        - S0 scale uncertainty on x0, S1 scale uncertainty on x1, S2 scale uncertainty on x2
      - X0: Inclusive cross section: Florian & Grazzini, Phys. Lett. B 674, 291 (2009)
      - X1: H+1-or-more-jets: MCFM
      - x2: H+2-or-more-jets: Campbell, Ellis & Williams, arXiv:1001.4495 [hep-ph]

| Signal Category | SO              | S1               | S2              |
|-----------------|-----------------|------------------|-----------------|
| 0-jet           | S0x(x0/(x0-x1)) | -S1x(x1/(x0-x1)) | 0               |
| 1-jet           | 0               | S1x(x1/(x1-x2))  | -S2x(x2/x1-x2)) |
| 2-jet           | 0               | 0                | S2              |

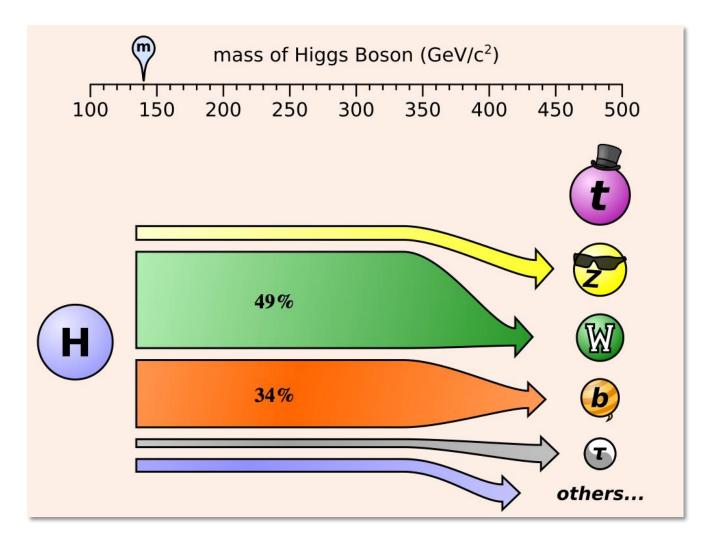

| Jet bin   | s0    | s1     | s2     |
|-----------|-------|--------|--------|
| 0 jet     | 13.4% | -23.0% | 0      |
| 1 jet     | 0     | 35%    | -12.7% |
| >= 2 jets | 0     | 0      | 33%    |

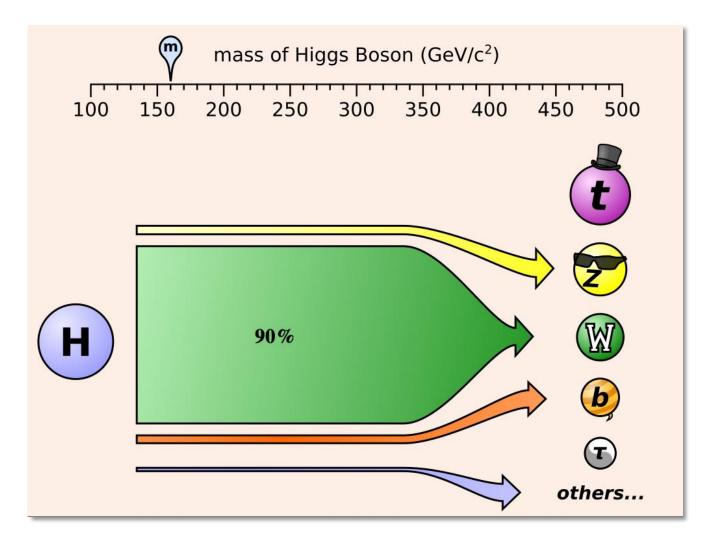
At Tevatron

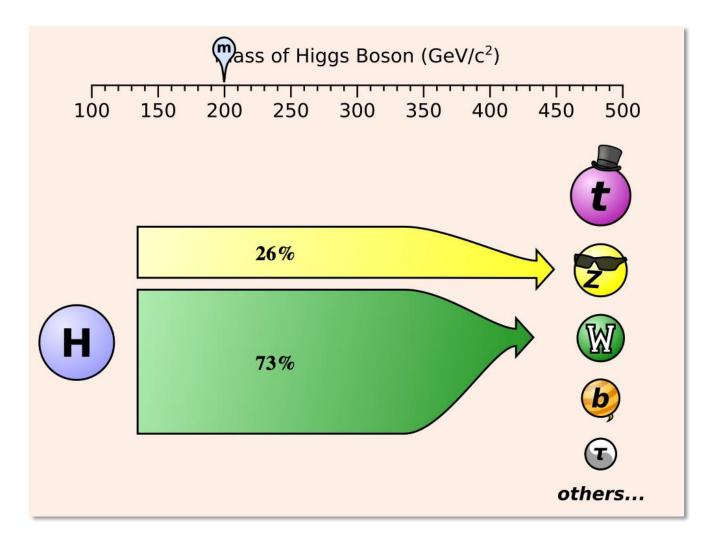


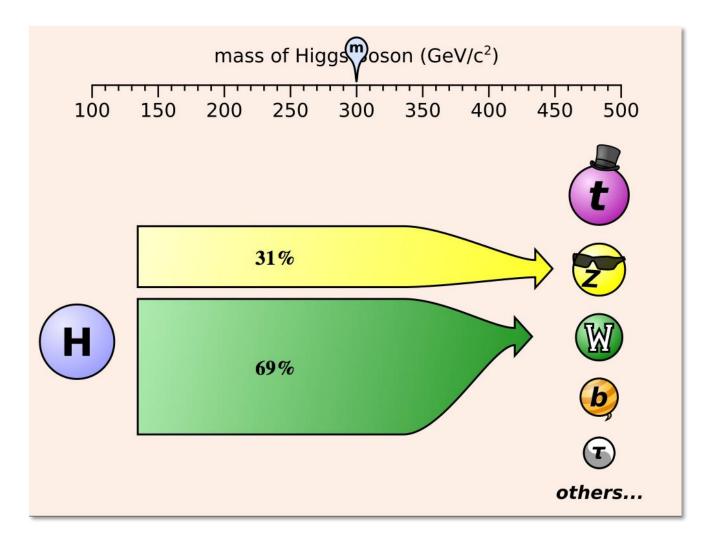

### Higgs decays

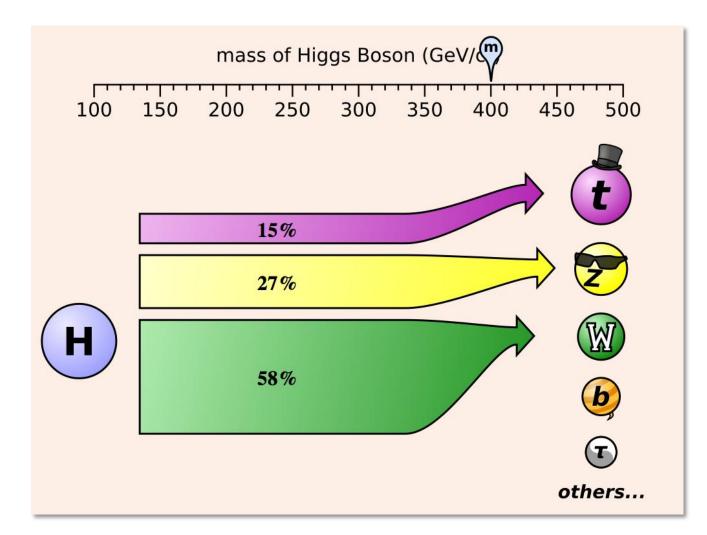
Ben Kilminster, Zurich 2012 Higgs workshop

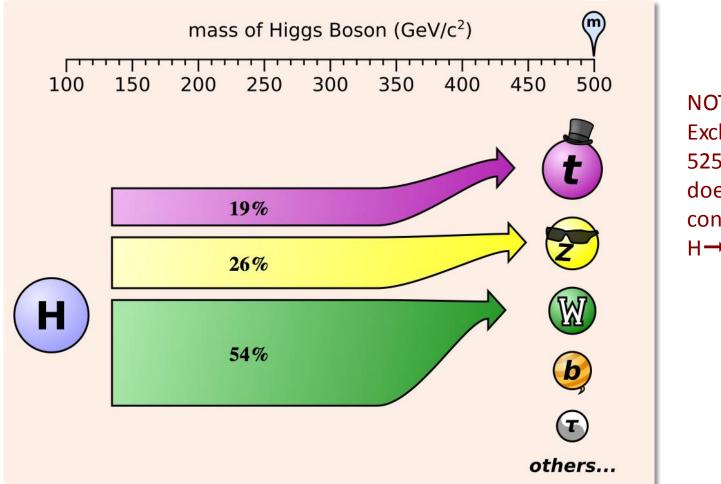




Ben Kilminster, Zurich 2012 Higgs workshop


#### The infamous 125 GeV excess





NOTE: Excess not due to dominant Higgs decay














NOTE: Exclusion at 525 GeV does not consider H→tt

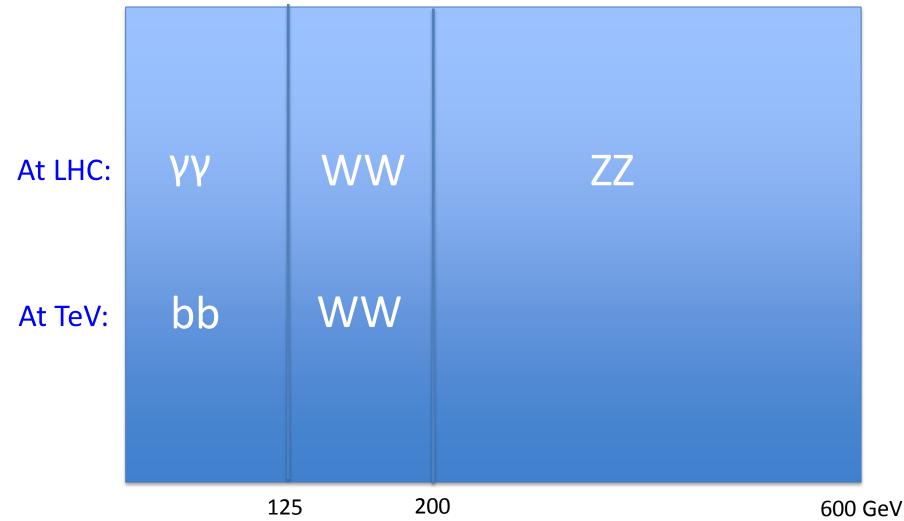
#### Channels in picture

#### Associated Higgs modes

|                    | LEP | Tevatron | LHC |
|--------------------|-----|----------|-----|
| ZH→vv(bb)          |     |          |     |
| ZH→qq(bb)          |     |          |     |
| ZH→II(bb)          |     |          |     |
| ZH→ττ(bb)          |     |          |     |
| ZH→qq(ττ)          |     |          |     |
| ZH→ZWW→III         |     |          |     |
| WH <b>→</b> Iv(bb) |     |          |     |
| WH <b>→</b> qq(bb) |     |          |     |
| WH <b>→</b> τν(bb) |     |          |     |
| WH→WWW→II(I)       |     |          |     |

#### Channels in picture

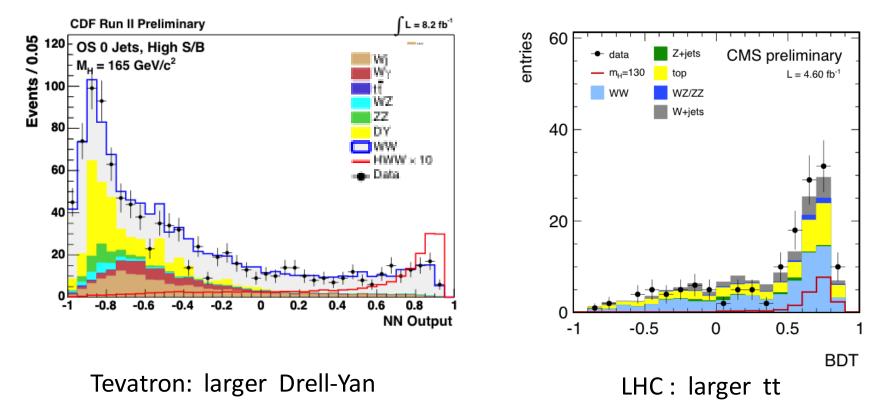
#### Gluon fusion, VBF, ttH


|                 | Tevatron | LHC |
|-----------------|----------|-----|
| H→WW→IvIv       |          |     |
| H→WW→lvqq       |          |     |
| H→WW→Ivτv       |          |     |
| H→ZZ→IIII       |          |     |
| H→ZZ→IIvv       |          |     |
| H→ZZ→llqq       |          |     |
| H→ZZ→IIττ       |          |     |
| H→ZZ→vvqq       |          |     |
| H→ττ+ jets      |          |     |
| Н→γγ            |          |     |
| ttH → lv+bb(b)  |          |     |
| ttH → MET+bb(b) |          |     |
| ttH → qq+bb(b)  |          |     |



### Higgs backgrounds

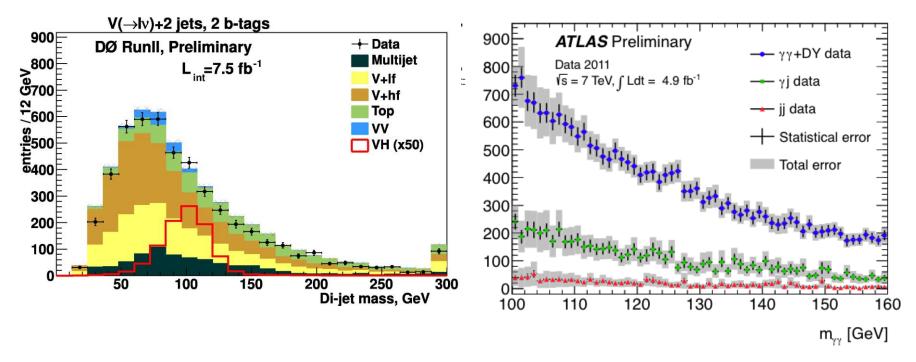
Ben Kilminster, Zurich 2012 Higgs workshop


#### Different dominant SM backgrounds at each mass



Ben Kilminster, Zurich 2012 Higgs workshop

## Higgs background composition at LHC vs. Tevatron

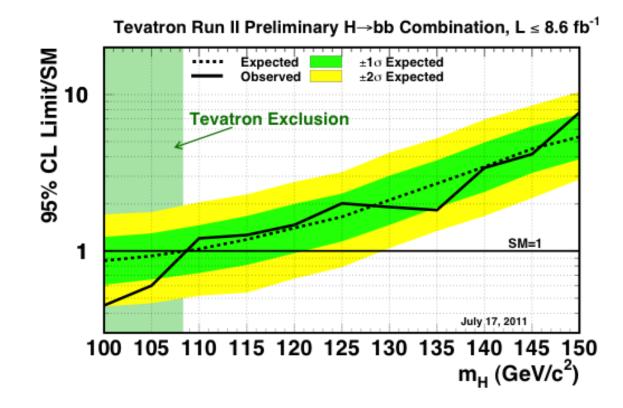

#### WW searches with 0 jets



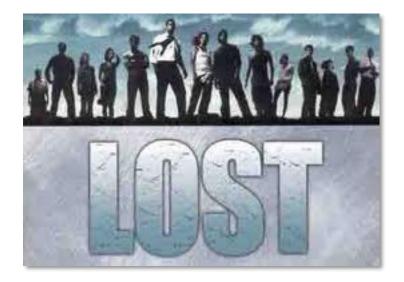
Consistent limits between Tevatron and LHC make background mis-modeling less likely

## Higgs background composition at LHC vs. Tevatron

#### Low mass range




#### Tevatron: W+jets dominant in $H \rightarrow bb$


LHC :  $\gamma\gamma$  dominant in  $H \rightarrow \gamma\gamma$ 

Consistent excesses between Tevatron and LHC would make background mis-modeling less likely

#### Tevatron H→bb



NOTE:  $H \rightarrow bb$  excess has not developed but, if there, should be expected across this mass range with full dataset



#### Statistical techniques

Ben Kilminster, Zurich 2012 Higgs workshop

#### Different test statistics used in picture

Table 11: Comparison of CL<sub>s</sub> definitions as used at LEP, Tevatron, and adopted for the summer 2011 Higgs combination at LHC.

|               | Test statistic                                                                                                       | Profiled?                          | Test statistic sampling     |                                                                        |
|---------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------|------------------------------------------------------------------------|
| LEP           | $q_{\mu} \;=\; -2  \ln rac{\mathcal{L}(data \mu, 	ilde{	heta})}{\mathcal{L}(data 0, 	ilde{	heta})}$                 | no                                 | Bayesian-frequentist hybrid | * Tevatron quotes                                                      |
| *<br>Tevatron | $q_{\mu} \;=\; -2\lnrac{\mathcal{L}(data \mu,\hat{	heta}_{\mu})}{\mathcal{L}(data 0,\hat{	heta}_{0})}$              | yes                                | Bayesian-frequentist hybrid | limits with Bayesian<br>technique;<br>CL <sub>s</sub> is a cross-check |
| LHC           | $\tilde{q}_{\mu} = -2 \ln \frac{\mathcal{L}(data \mu,\hat{\theta}_{\mu})}{\mathcal{L}(data \hat{\mu},\hat{\theta})}$ | yes<br>$(0 \le \hat{\mu} \le \mu)$ | frequentist                 |                                                                        |

From CMS+ATLAS combination procedure note

- $\mu$ : scaling of signal cross-section where SM=1
- $\theta$ : nuisance parameters
- $q_{\mu}$ : test statistic of the signal + background model

### CL<sub>s</sub> technique

- Confidence levels are evaluated by integrating corresponding log likelihood ratio distributions populated by simulating outcomes via Poisson statistics
- LHC: Pseudo-data is generated using best fit of nuisance parameters to the observed data
  - For both background-only and signal+background hypothesis in LLR
- Tevatron: Pseudo-data is generated using expected values of nuisance parameters
- CL<sub>s</sub> is computationally expensive
  - LHC CL<sub>s</sub> has asymptotic properties so that limits can be evaluated with a simple formula – no pseudo-data needed :

$$CL_s = 0.05 = \frac{1 - \Phi(\sqrt{q_{\mu}})}{\Phi(\sqrt{q_{\mu,A}} - \sqrt{q_{\mu}})}$$

 $\Phi^{-1}$  is the quantile (inverse of the cumulative distribution) of the standard Gaussian.

## Bayesian technique used by Tevatron

**Bayesian Posterior Probability** 

$$\begin{split} p(R|\vec{n}) &= \frac{\int \int d\vec{s} d\vec{b} L(R,\vec{s},\vec{b}|\vec{n}) \pi(R,\vec{s},\vec{b})}{\int \int \int dR d\vec{s} d\vec{b} L(R,\vec{s},\vec{b}|\vec{n}) \pi(R,\vec{s},\vec{b})} \Rightarrow \int_{0}^{R_{0.95}} p(R|\vec{n}) dR = 0.95 \\ R &= (\sigma \times BR) / (\sigma_{SM} \times BR_{SM}), \ R_{0.95}: 95\% \text{ Credible Level Upper Limit} \\ \vec{s}, \vec{b}, \vec{n} &= s_{ij}, b_{ij}, n_{ij} (\text{\# of signal, background and observed events in } j\text{-th bin for } i\text{-th channel}) \\ \pi: \text{Bayes' prior density} \end{split}$$

**Combined Binned Poisson Likelihood** 

$$L(R, \vec{s}, \vec{b} | \vec{n}) = \prod_{i=1}^{N_{\text{channel}}} \prod_{j=1}^{N_{\text{bin}}} \frac{\mu_{ij}^{n_{ij}} e^{-\mu_{ij}}}{n_{ij}!}$$

Principle of ignorance

- for the number of higgs events (instead of higgs Xsec)

$$\begin{split} &\pi(R,\vec{s},\vec{b}) = \pi(R)\pi(\vec{s})\pi(\vec{b}) = s_{tot}\theta(Rs_{tot})\pi(\vec{s})\pi(\vec{b}) \\ &s_{tot} = \Sigma_{i,j}s_{ij}: \text{Total number of signal prediction} \\ &\pi(x) = G(x|\hat{x},\sigma_x) \quad (x=s,b) \qquad \hat{x}: \text{ expected mean, } \sigma_x: \text{ total uncertainty} \end{split}$$

The integrals over the uncertain parameters with their correlated priors from external constraints are done with a Markov Chain Monte Carlo integration method, using the Metropolis-Hastings algorithm.

Ben Kilminster, Zurich 2012 Higgs workshop

- CLs vs Bayesian ?
- Different flavors of CL<sub>s</sub> (LEP, Tevatron, LHC)
- Asymptotic approximation of CL<sub>s</sub> without toys

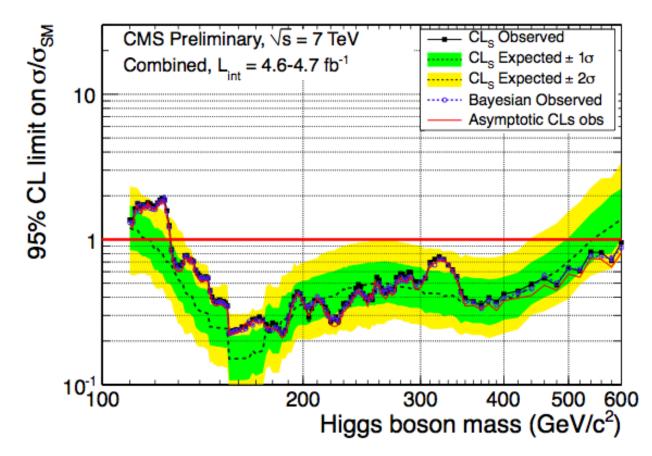
# Do we need to care what is used ?

Not obvious from get-go, but the answer is "NO"

# CL<sub>s</sub> vs. Bayesian

• Tevatron limits from summer 2011

TABLE V: Ratios of median expected and observed 95% C.L. limit to the SM cross section for the combined CDF and D0 analyses as a function of the Higgs boson mass in  $\text{GeV}/c^2$ , obtained with the Bayesian and with the CL<sub>s</sub> method.


| Bayesian | 155  | 160  | 165  | 170  | 175  | 180  | 185  | 190  | 195  | 200  |
|----------|------|------|------|------|------|------|------|------|------|------|
| Expected | 0.80 | 0.59 | 0.57 | 0.67 | 0.80 | 0.97 | 1.22 | 1.49 | 1.71 | 2.02 |
| Observed | 1.08 | 0.66 | 0.48 | 0.62 | 0.91 | 1.14 | 1.31 | 1.90 | 2.41 | 2.91 |
|          |      |      |      |      |      |      |      |      |      |      |
| $CL_s$   | 155  | 160  | 165  | 170  | 175  | 180  | 185  | 190  | 195  | 200  |
| Expected | 0.82 | 0.61 | 0.58 | 0.67 | 0.81 | 0.98 | 1.24 | 1.50 | 1.77 | 2.04 |
| Observed | 1.03 | 0.67 | 0.48 | 0.61 | 0.92 | 1.17 | 1.34 | 1.92 | 2.39 | 2.82 |

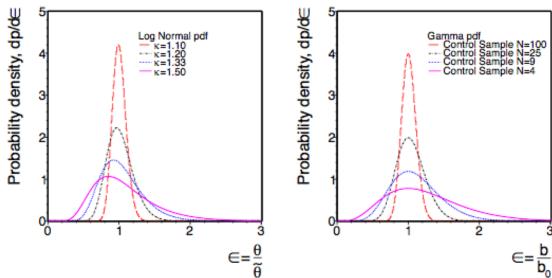
- Expected agree to 1-2% on average
- Observed agree to 1-3 % or so on average
- Max disagreement is 2.23 -> 2.38 (10%)

### Two philosophies draw same conclusions

# Asymptotic vs. CL<sub>s</sub> vs. Bayesian

• CMS Dec. 2011 combination




Strong agreement – asymptotic agrees better when high statistics



# Treatment of nuisance parameters

## Choice of PDFs for nuisance parameters

- Flat or uniform priors
  - Ie, constrained by data measurement, such as signal cross-section
- Poisson
  - Ie, constrained from event counts in control regions or MC statistics
- Normal
  - Gaussian
  - If uncertainties can assume only positive values
    - Log-normal LHC
    - Truncated Tevatron (less elegant, but found to be same as log-normal)



For small uncertainties, or large statistics, lognormal and Gamma distribution equivalent to Gaussian

## Correlated between analyses and experiments

#### $PDF + \alpha_s$ uncertainties

| nuisance  | groups of physics processes                                                                 |
|-----------|---------------------------------------------------------------------------------------------|
| pdf_gg    | $gg \rightarrow H, t\bar{t}H, VQQ, t\bar{t}, tW, tb \text{ (s-channel)}, gg \rightarrow VV$ |
| pdf_qqbar | VBF $H, VH, V, VV, \gamma\gamma$                                                            |
| pdf_qg    | $tbq$ (t-channel), $\gamma$ +jets                                                           |

#### QCD scale uncertainties

| nuisance        | groups of physics processes                                        |
|-----------------|--------------------------------------------------------------------|
| QCDscale_ggH    | total inclusive $gg \rightarrow H$                                 |
| QCDscale_ggH1in | inclusive $gg/qg \rightarrow H+ \geq 1$ jets                       |
| QCDscale_ggH2in | inclusive $gg/qg \rightarrow H+ \geq 2$ jets                       |
| QCDscale_qqH    | VBF H                                                              |
| $QCDscale_VH$   | associate VH                                                       |
| $QCDscale_ttH$  | $t\bar{t}H$                                                        |
| $QCDscale_V$    | W and Z                                                            |
| QCDscale_VV     | WW, WZ, and ZZ up to NLO                                           |
| $QCDscale_ggVV$ | $gg \to WW$ and $gg \to ZZ$                                        |
| $QCDscale_ZQQ$  | Z with heavy flavor $q\bar{q}$ -pair                               |
| $QCDscale_WQQ$  | W with heavy flavor $q\bar{q}$ -pair                               |
| QCDscale_ttbar  | $t\bar{t}$ , single top productions are lumped here for simplicity |

#### Phenomenological uncertainties

| nuisance | groups of physics processes                      |
|----------|--------------------------------------------------|
| UEPS     | all processes sensitive to modeling of UE and PS |

#### Acceptance uncertainties

| nuisance              | comments                                                             |
|-----------------------|----------------------------------------------------------------------|
| QCDscale_WW_EXTRAP    | extrap. factor $\alpha$ for deriving WW bkgd in HWW analysis         |
| QCDscale_ttbar_EXTRAP | extrap. factor $\alpha$ for deriving $t\bar{t}$ bkgd in HWW analysis |

#### Instrumental uncertainties

| nuisance | comments                      |
|----------|-------------------------------|
| lumi     | uncertainties in luminosities |

#### Instrumental uncertainties not correlated between experiments

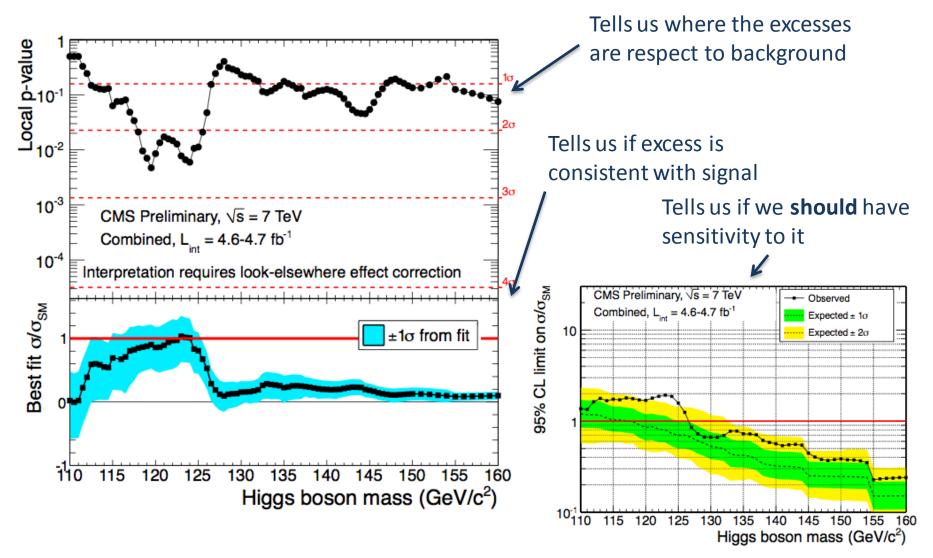
Sometimes correlated between analyses within an experiment depending on measurement technique

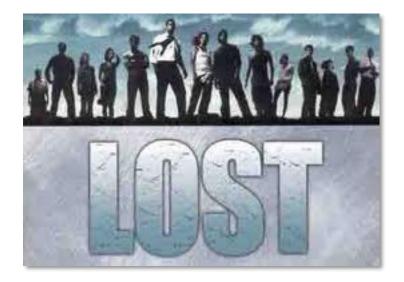
#### Similar for Tevatron

# What if there is an excess ?

To quantify an excess of events, we use the alternative test statistic  $q_0$ , defined as follows:

$$q_0 = -2\ln \frac{\mathcal{L}(\operatorname{data}|0,\hat{\theta}_0)}{\mathcal{L}(\operatorname{data}|\hat{\mu},\hat{\theta})} \quad \text{and } \hat{\mu} \ge 0.$$
(6)


This test statistic allows us to evaluate significances (Z) and p-values ( $p_0$ ) from the following asymptotic formula [24]:


$$Z = \sqrt{q_0^{\text{obs}}},\tag{7}$$

$$p_0 = P(q_0 \ge q_0^{\text{obs}}) = \frac{1}{2} \left[ 1 - \operatorname{erf} \left( Z/\sqrt{2} \right) \right],$$
 (8)

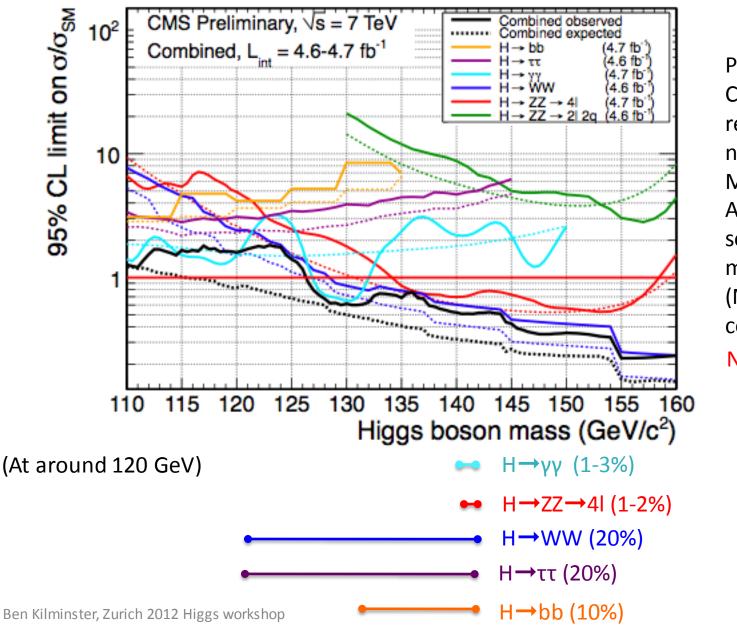
where  $q_0^{\text{obs}}$  is the observed test statistic calculated for  $\mu = 0$  and with only one constraint  $0 \le \hat{\mu}$ , which ensures that data deficits are not counted on an equal footing with data excesses.

### Need complete picture to understand excess



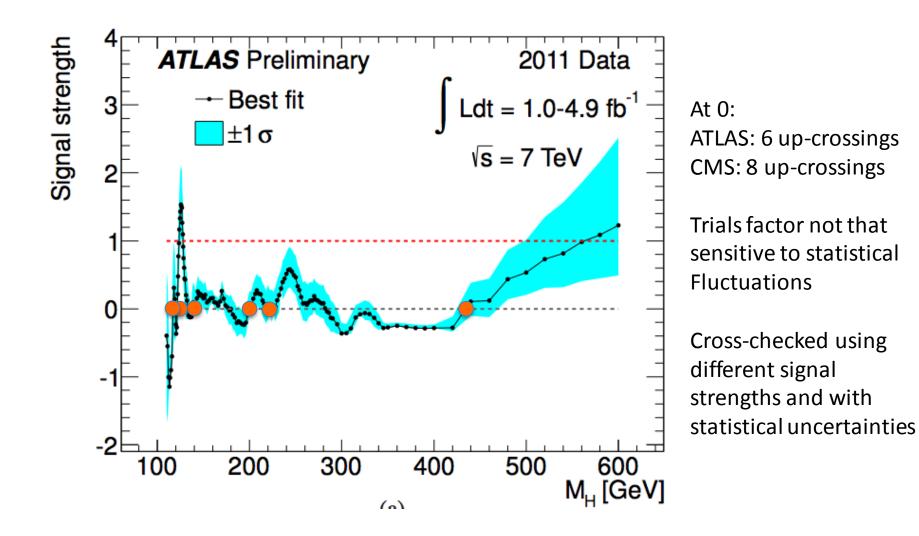


# What is the true probability of a local excess ?


# Trials factors estimations

 Number of independent searches being performed

Range of search in mass / Mass resolution


- Pseudo-data
  - Using toy MC to determine how often an excess as large can happen
- Approximation
  - For small P-values, in asymptotic regime, can count up-crossings of signal stength = 0, and determine global P-value from test statistic
    - In observed data

## Approx: Trials factor = Range / resolution



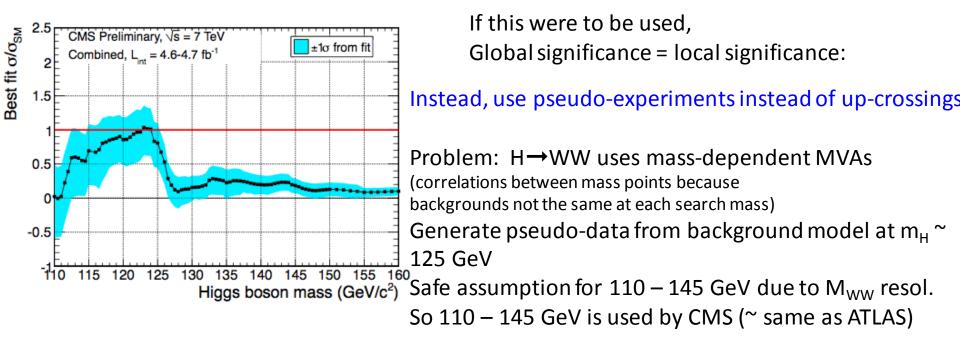
Problem: Concept of mass resolution not clear in an MVA Also MVAs trained separately at each mass point ! (Mass points are correlated) Not used by LHC

# Trials factor: Up-crossings



# Significances of excesses

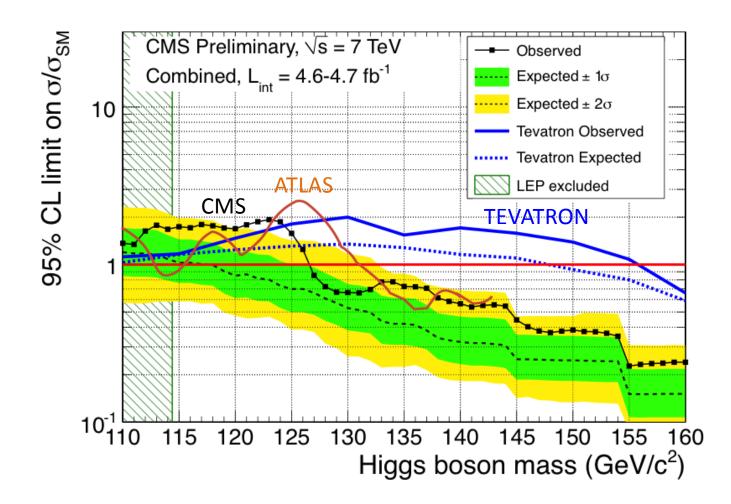
- ATLAS: 126 GeV
  - 3.6 Sigma local P-value
  - 2.2 Sigma with trials factor
- CMS: 119 GeV
  - 2.6 Sigma local P-value
  - 0.6 Sigma with trials factor


## But what is the right Look Elsewhere Effect ?

- CMS & ATLAS search 110 600 GeV
  - Decided a priori based on experimental reach
  - Generates a large Look Elsewhere Effect
  - Do we really expect a SM Higgs boson to be 600 GeV ?
- Could use previous experimental exclusions for prior
  - ATLAS uses 2fb<sup>-1</sup> LHC combination to motivate restricted window
    - 110-146 GeV :
    - 3.6  $\sigma$  local  $\rightarrow$  2.2  $\sigma$  (full mass range)  $\rightarrow$  2.5  $\sigma$  (restricted)
  - But *unfair* to use subset of data both to define search window and perform search

# Restricted mass range

- CMS restricted mass range
  - Statistical uncertainty of up-crossing technique in observed data is limited


CMS finds 1 up-crossing in this mass range



## What is the right restricted mass range ?

- CMS could use ATLAS' exclusion range for search window & vice versa
  - Not very agreeable since there are correlations between nuisance parameters of CMS & ATLAS
- Could split data into old data for exclusion, and new data for search window
  - Lots of work, and would be self-defeating since not all data would be used, reducing significance at the expense of reducing trials factor
- Instead ... the SM Higgs boson is predicted by precision electroweak measurements (LEPEWWG)
  - $m_{H} < 161 \,\text{GeV}$  at 95% CL
- So a more appropriate prior assumption for look elsewhere effect would be :
  - 110-161 GeV

# Our picture of the Higgs boson



# **Conclusions from Higgs picture**



### ... but not forgotten

- Higgs signal
  - Production at each mass
  - Production at each accelerator
  - Uncertainties
  - Uncertainties of exclusive final states
- Higgs decays at each mass
- Backgrounds at each mass
- Backgrounds at each accelerator
- Different statistical methods
- Defining an excess

# Higgs discovered

## Rename "God particle"

Newspaper Headline : "Physicists prove God exists" Rake in the \$\$\$ Rename "Devil particle"

**Higgs excluded** 

Newspaper Headline : "Physicists prove Devil does not exist"

ŚŚŚ