
Modeling and Testing a 
Composite Higgs

Andrea Wulzer

Based on:  
“The Discrete Composite Higgs model”, with G. Panico,
and work in progress with G.Panico and A.Matsedonski 



Introduction:

Good reasons to advocate a light Higgs:

1. EWPT

2. We have (perhaps) almost seen one !



Introduction:

Imagine the Higgs is Composite (Georgi, Kaplan)

Hierarchy Problem is solved :

Corrections to        screened above     \

       is IR-saturated

1/lHmH

mH



Introduction:

Postulate a New Strong Sector

SILH Paradigm (or Prejudice) :
(Giudice, Grojean, Pomarol, Rattazzi)

One mass scale

One coupling

(Example:                         )

But                   if the Higgs is a Goldstone

Higgs Decay Constant:                   



Models of Composite Higgs

The non-linear sigma-model

Composite Sector Elementary states

U = Exp [ihaT a/f ]



Models of Composite Higgs

The non-linear sigma-model

Perfect to study modified Higgs couplings 
(Giudice et al, Barbieri et al, Espinosa et al.)

EWPT suggest : λ ! λSM (1 + c ξ)



Models of Composite Higgs

The non-linear sigma-model

Perfect to study modified Higgs couplings 
(Giudice et al, Barbieri et al, Espinosa et al.)

However, it is not completely predictive framework :

EWPT suggest : λ ! λSM (1 + c ξ)

Higgs Potential is not IR-saturated 



Models of Composite Higgs

The Discrete Composite Higgs model

Introduce resonances that protect the potential
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Figure 2: The same as figure 1, but for the three-site model.

reduces the degree of divergence from quadratic to logarithmic. To further reduce the divergence

and make the potential finite we need to introduce one additional symmetry under which the Higgs

is a Goldstone. This is achieved in the three-site DCHM, as we will now discuss.

2.2.2 Three sites

The central ingredient for the construction of the three-site model, schematically depicted in fig-

ure 2, is a pair of identical σ-models, based as before on the coset SO(5)L×SO(5)R/SO(5)V . These

are parametrized by two SO(5) matrices U1 and U2, for a total of 20 Goldstone bosons ΠA
1 and ΠA

2 .

The Goldstone Lagrangian is given, at the leading order, by

Lπ =
f2

4
Tr

[
(DµU1)

tDµU1
]
+

f2

4
Tr

[
(DµU2)

tDµU2
]
. (30)

The assumption that the two σ-models are identical, which led to the choice of equal decay constants

in the above equation, is equivalent to imposing a 1 ↔ 2 discrete symmetry.

The symmetries of the two σ-models, SO(5)1L × SO(5)1R and SO(5)2L × SO(5)2R, are broken by

gauging. As in the two-site case, the “first” group SO(5)1L is broken by the couplings with the

SM gauge bosons and the “last” one, SO(5)2R, by the couplings with ρ̃. We break the remaining

groups, SO(5)1R and SO(5)2L, by gauging their vector combination. The 10 associated gauge fields

ρAµ , whose coupling is denoted by g∗, become massive by eating 10 Goldstones and are interpreted

as resonances of the strongly-interacting sector. The expressions for the masses of the composite

resonances and for the gauge couplings of the massless states will be given in section 3.3.

This gauge structure, summarized in figure 2, corresponds to the covariant derivatives

DµU1 = ∂µU1 − iAµU1 + iU1Rµ ,

DµU2 = ∂µU2 − iLµU2 + iU2R̃µ , (31)

where Rµ and Lµ are actually identical, Rµ = Lµ = g∗ρAµTA, and Aµ is defined in eq. (17). After
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10+10 scalar d.o.f reduced to 4 by gauging                       ,

G.Panico, A.W.:  arXiv:1106.2719
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Introduce resonances that protect the potential



Models of Composite Higgs

The Discrete Composite Higgs model

Higgs is Goldstone under three symmetry groups :

Collective Breaking
(Arkani-Hamed, Cohen, Georgi)

EWSB effects only through the breaking of all groups
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Models of Composite Higgs

The Discrete Composite Higgs model

Higgs Potential is now finite at one loop

Careful analysis reveals stronger (    ) suppression

Similar protection mechanism for S and T
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The Discrete Composite Higgs model

Fermionic sector :
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Figure 4: The matter sector of the three-site DCHM.

breaking, for which two powers of ∆L would have been sufficient. Finally, again as for the gauge

sector, the fermionic contributions to the Higgs potential are still logarithmically divergent. The

local operators associated to the divergence are

cR
16π2

∆†
RU m̃2 U t∆R and

cL
16π2

∑

α

∆(α)
L

†
U m̃2 U t∆(α)

L , (43)

and originate, respectively, from loops of the elementary tR and qL .

To obtain a calculable Higgs potential we have to consider the three-site model. As shown

in figure 4, this is constructed by introducing two five-plets of fermionic Dirac resonances ψ and

ψ̃. The first one, ψ, transforms under the right group of the first link, SO(5)1R, while ψ̃ is in the

fundamental of SO(5)2R. The mixing Lagrangian is similar to the one of the two-site case, with

the difference that the elementary fields mix now with ψ and not with ψ̃. Introducing the ∆L,R

spurions, we have

Lmix = qL
i∆iI

L (U1)IJ ψ
J + tR ∆I

R (U1)IJ ψ
J + ψ

I
∆ J

I (U2)JK ψ̃K + h.c. . (44)

The associated spurions, ∆L and∆R, transform under both the elementary SU(2)0L×U(1)0R×U(1)0X

and the SO(5)1L×U(1)X group, and break the global symmetry to the SM group as explained above

in the case of two sites. The new spurion, ∆, has indices in SO(5)1R and in SO(5)2L. Its physical

value ∆ J
I = ∆ δ J

I is proportional to the identity, and therefore breaks SO(5)1R × SO(5)2L to the

vector subgroup. The other terms which are present in the leading order Lagrangian are

Lf
el = i qLγ

µDµqL + i tRγ
µDµtR ,

Lf
st = i ψ̃γµDµψ̃ + m̃IJ ψ̃I ψ̃J

+ iψγµDµψ + mψψ , (45)

where the covariant derivatives are defined in eq. (38), and

Dµψ =

(
∂µ − i

2g′0
3

Bµ − iGR
AρAµ

)
ψ . (46)
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Partial compositeness (Kaplan 1991;)
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and the SO(5)1L×U(1)X group, and break the global symmetry to the SM group as explained above

in the case of two sites. The new spurion, ∆, has indices in SO(5)1R and in SO(5)2L. Its physical

value ∆ J
I = ∆ δ J

I is proportional to the identity, and therefore breaks SO(5)1R × SO(5)2L to the

vector subgroup. The other terms which are present in the leading order Lagrangian are

Lf
el = i qLγ

µDµqL + i tRγ
µDµtR ,

Lf
st = i ψ̃γµDµψ̃ + m̃IJ ψ̃I ψ̃J
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)
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The Higgs Potential

The Higgs quartic is of order 

contributions. Following [6, 20] we have

V ! Nc

16π2
m4

ρ
y2

g2ρ
V (1)(〈h〉/f) + Nc

16π2
m4

ρ

(
y2

g2ρ

)2

V (2)(〈h〉/f) , (58)

where y2 denotes generically (yuL)
2 or (yuR)

2. The first term in the equation above, of order y2,

corresponds to eq. (55). As discussed before, the mass term coming from the y2 and the y4

contributions cancel between each other, but not the quartic, which then can be estimated as 12

V (4) ∼ Nc

16π2
y4〈h〉4 . (59)

From this expression we can extract the value of the Higgs mass

m2
H ∼ 8

Nc

16π2
y4max〈h〉2 , (60)

where we denoted by y4max the maximum between y4L and y4R. In our case, due to eq. (57), yL !
2yR = ymax. On the other hand, the top mass can be estimated as usual by

mt !
yuLy

u
R

gρ
〈h〉 . (61)

Comparing the above equation with the Higgs mass in eq. (60) we find

mH ∼ 4
√
2Nc

( gρ
4π

)
mt . (62)

The result is that, for typical values of the composite sector couplings, the Higgs is relatively

heavy, usually above the top mass. A scan on the parameter space of the model shows that the

ratio mH/mt follows an approximately linear growth in gρ in fair agreement with the estimate in

eq. (62), but only if no light fermionic resonance is present (see figure 7). If on the contrary light

states arise from the composite sector, eq. (62) is usually violated and smaller Higgs masses are

obtained. Notice that it is not surprising that our estimates are violated in this case because we

assumed a common size mρ for all the strong sector particle masses.

12Notice that the gauge contribution to the Higgs potential, which is parametrically smaller than the fermionic
one, can sizably affect the tuning when 〈h〉/f is very small. The gauge contribution, however, is always smaller than
each of the (yu

L)
2 and (yu

R)
2 leading order fermionic contributions to the potential in eq. (55), so that the cancellation

mechanism which leads to eq. (57) remains valid. Furthermore it is easy to see that the gauge contribution to the
quartic term in eq. (59) is always negligible.
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eq. (62), but only if no light fermionic resonance is present (see figure 7). If on the contrary light

states arise from the composite sector, eq. (62) is usually violated and smaller Higgs masses are

obtained. Notice that it is not surprising that our estimates are violated in this case because we

assumed a common size mρ for all the strong sector particle masses.

12Notice that the gauge contribution to the Higgs potential, which is parametrically smaller than the fermionic
one, can sizably affect the tuning when 〈h〉/f is very small. The gauge contribution, however, is always smaller than
each of the (yu

L)
2 and (yu

R)
2 leading order fermionic contributions to the potential in eq. (55), so that the cancellation

mechanism which leads to eq. (57) remains valid. Furthermore it is easy to see that the gauge contribution to the
quartic term in eq. (59) is always negligible.
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Gives realistic EWSB only if : 

Dominated by fermionic contribution



The Higgs Potential

Blind Scan Points with no light partners

The naive estimate fails if there are light top partners

However ....
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The Higgs Potential

Blind Scan Points with no light partners

The naive estimate fails if there are light top partners

Higgs is too heavy without light partners!

However ....
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The Higgs Potential

The Light Top Partners enhance        : \

tan θ =
∆

mT
=

yf

mT

The potential can be accurately approximated by expanding at leading order the logarithm in

eq. (7) under the assumption that the second term in the logarithm argument is much smaller than

unity. This is of course not true in the limit p2 → 0, however in this limit the factor p3 in front of

the logarithm compensate for the divergence and the approximate integrand vanishes linearly for

p → 0. The error made with this expansion is thus typically small. After the expansion and the

integration, the potential takes the form

V (〈h〉) $ A sin2 α + B sin2 α cos2 α . (13)

The value of the coefficient B can be easily found analytically by integrating the function p3C2(p2)/D(p2):

B =
(m̃u

Q − m̃u
T )2

2
(∆u)4 y2

L y2
R f4

∑

I=T−,T+,
eT−, eT+

log(mI/f)∏
J !=I(m2

I −m2
J)

. (14)

We can use an expansion in the limit in which the second-level resonances are much heavier than

the first ones:

B $
(m̃u

Q − m̃u
T )2

2
(∆u)4 y2

L y2
R f4

log
(
mT−/meT−

)
(
m2

T−
−m2

eT−

)
m2

T+
m2

eT+

. (15)

The contribution of subleading terms in the previous approximation can give sizable corrections

to the above approximate expression if the first-level resonances are relatively heavy. In this case

eq. (15) can overestimate the value of B by a factor at most ∼ 2.

Assuming that the value of α = 〈h〉/fπ is given, we can find the value of the Higgs mass as a

function of α and B from eq. (13):

m2
H = 2B sin2(2α) . (16)

Comparing this expression with the approximate formula for the top mass in eq. (6), in the ap-

proximation of eq. (15), we find

mH

mt
$
√

Nc

π

mT−m eT−
f

√√√√ log
(
mT−/m eT−

)

m2
T−
−m2

eT−

. (17)

Due to the corrections to eq. (15) the above formula can overestimate the ratio mH/mt by about

50% if the first resonance level is relatively heavy.

3

Since the estimate of the quartic is unchanged :

mt ∼MT
yLyRf2

mT−m eT−

√
ξ
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Light Higgs wants Light Partners :

mH ∈ [115, 130]
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LHC has already probed part of this plot :

CMS search of B :

mH ∈ [115, 130]



Conclusions and Outlook

 The DCHM is a complete, minimal model of CH
(simple enough to be implemented in a MG card)

 Applications:

1) Provide a benchmark model to visualize impact of exclusion

2) Playground for verifying (discovering) general aspects of CH

3) Parametrize the data ! in case of discovery



Conclusions and Outlook

 LHC is already testing the CH, much more at 14 TeV:

1) Top Partners

2) Higgs couplings

3) KK-Gluons

4) EW resonances



The Higgs Potential

The Higgs quartic must therefore be estimated from the subleading term :

contributions. Following [6, 20] we have

V ! Nc

16π2
m4

ρ
y2

g2ρ
V (1)(〈h〉/f) + Nc

16π2
m4

ρ

(
y2

g2ρ

)2

V (2)(〈h〉/f) , (58)

where y2 denotes generically (yuL)
2 or (yuR)

2. The first term in the equation above, of order y2,

corresponds to eq. (55). As discussed before, the mass term coming from the y2 and the y4

contributions cancel between each other, but not the quartic, which then can be estimated as 12

V (4) ∼ Nc

16π2
y4〈h〉4 . (59)

From this expression we can extract the value of the Higgs mass

m2
H ∼ 8

Nc

16π2
y4max〈h〉2 , (60)

where we denoted by y4max the maximum between y4L and y4R. In our case, due to eq. (57), yL !
2yR = ymax. On the other hand, the top mass can be estimated as usual by

mt !
yuLy

u
R

gρ
〈h〉 . (61)

Comparing the above equation with the Higgs mass in eq. (60) we find

mH ∼ 4
√
2Nc

( gρ
4π

)
mt . (62)

The result is that, for typical values of the composite sector couplings, the Higgs is relatively

heavy, usually above the top mass. A scan on the parameter space of the model shows that the

ratio mH/mt follows an approximately linear growth in gρ in fair agreement with the estimate in

eq. (62), but only if no light fermionic resonance is present (see figure 7). If on the contrary light

states arise from the composite sector, eq. (62) is usually violated and smaller Higgs masses are

obtained. Notice that it is not surprising that our estimates are violated in this case because we

assumed a common size mρ for all the strong sector particle masses.

12Notice that the gauge contribution to the Higgs potential, which is parametrically smaller than the fermionic
one, can sizably affect the tuning when 〈h〉/f is very small. The gauge contribution, however, is always smaller than
each of the (yu

L)
2 and (yu

R)
2 leading order fermionic contributions to the potential in eq. (55), so that the cancellation

mechanism which leads to eq. (57) remains valid. Furthermore it is easy to see that the gauge contribution to the
quartic term in eq. (59) is always negligible.
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ratio mH/mt follows an approximately linear growth in gρ in fair agreement with the estimate in

eq. (62), but only if no light fermionic resonance is present (see figure 7). If on the contrary light

states arise from the composite sector, eq. (62) is usually violated and smaller Higgs masses are

obtained. Notice that it is not surprising that our estimates are violated in this case because we

assumed a common size mρ for all the strong sector particle masses.

12Notice that the gauge contribution to the Higgs potential, which is parametrically smaller than the fermionic
one, can sizably affect the tuning when 〈h〉/f is very small. The gauge contribution, however, is always smaller than
each of the (yu

L)
2 and (yu

R)
2 leading order fermionic contributions to the potential in eq. (55), so that the cancellation

mechanism which leads to eq. (57) remains valid. Furthermore it is easy to see that the gauge contribution to the
quartic term in eq. (59) is always negligible.
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Cancel the leading term in order to get realistic EWSB: 

Dominated by fermionic contribution :


