Modeling and Testing a Composite Higgs

Andrea Wulzer

Based on:
"The Discrete Composite Higgs model", with G. Panico, and work in progress with G.Panico and A.Matsedonski

Introduction:

Good reasons to advocate a light Higgs:

I. EWPT

2. We have (perhaps) almost seen one!

Introduction:

Imagine the Higgs is Composite (Georgi, Kaplan)

Hierarchy Problem is solved :
Corrections to m_{H} screened above $1 / l_{H}$ m_{H} is IR-saturated

Introduction:

Postulate a New Strong Sector

SILH Paradigm (or Prejudice) :
(Giudice, Grojean, Pomarol, Rattazzi)

One mass scale $\quad m_{\rho}$
H
One coupling $\quad g_{\rho} \leq 4 \pi$

$$
\text { (Example: } g_{\rho}=4 \pi / \sqrt{N_{c}} \text {) }
$$

But $m_{H} \ll m_{\rho}$ if the Higgs is a Goldstone Higgs Decay Constant: $\quad f=m_{\rho} / g_{\rho}$

Models of Composite Higgs

The non-linear sigma-model

$$
\mathcal{L}=\frac{f^{2}}{2} D_{\mu} \Sigma^{t} D^{\mu} \Sigma
$$

Elementary states

$$
\begin{aligned}
& \mathrm{SO}(5) \rightarrow \mathrm{SO}(4) \longleftrightarrow g \cdot W_{\mu} \\
& H \in \mathrm{SO}(5) / \mathrm{SO}(4) \longleftrightarrow y_{L} \cdot q_{L} \\
& y_{R} \cdot t_{R}
\end{aligned}
$$

$$
D_{\mu} \Sigma=\partial_{\mu} \Sigma-i A_{\mu} \Sigma
$$

$$
U=\operatorname{Exp}\left[i h_{a} T^{a} / f\right]
$$

$$
A_{\mu}=g W_{\mu}^{\alpha} T_{L}^{\alpha}+g^{\prime} B_{\mu} T_{R}^{3}
$$

Models of Composite Higgs

The non-linear sigma-model
Perfect to study modified Higgs couplings
(Giudice et al, Barbieri et al, Espinosa et al.)
$\lambda \simeq \lambda^{\mathrm{SM}}(1+c \xi) \quad \xi=(v / f)^{2} \quad$ EWPT suggest : $\xi=0.2,0.1$

Models of Composite Higgs

The non-linear sigma-model
Perfect to study modified Higgs couplings
(Giudice et al, Barbieri et al, Espinosa et al.)
$\lambda \simeq \lambda^{\mathrm{SM}}(1+c \xi) \quad \xi=(v / f)^{2} \quad$ EWPT suggest : $\xi=0.2,0.1$
However, it is not completely predictive framework :
Higgs Potential is not IR-saturated

$$
V^{(1)}(h / f)=\Lambda^{2} f^{2}\left(\frac{\Lambda}{4 \pi f}\right)^{2}\left(\frac{g f}{\Lambda}\right)^{2} v(h / f)=g^{2} \frac{\Lambda^{2} f^{2}}{16 \pi^{2}} v(h / f)
$$

Models of Composite Higgs

G.Panico,A.W.: arXiv:II06.27I9

The Discrete Composite Higgs model
Introduce resonances that protect the potential

$$
\begin{aligned}
& \stackrel{W / B}{U_{1}} \stackrel{\rho}{\bigcirc}{ }^{(}{ }^{\left(U_{2}\right.} \\
& \mathcal{L}^{\pi}=\frac{f^{2}}{4} \operatorname{Tr}\left[\left(D_{\mu} U_{1}\right)^{t} D^{\mu} U_{1}\right]+\frac{f^{2}}{4} \operatorname{Tr}\left[\left(D_{\mu} U_{2}\right)^{t} D^{\mu} U_{2}\right]
\end{aligned}
$$

Each U is a Goldstone matrix of $\quad \mathrm{SO}(5)_{L} \times \mathrm{SO}(5)_{R} / \mathrm{SO}(5)_{V}$

Models of Composite Higgs

G.Panico,A.W.: arXiv:II06.27I9

The Discrete Composite Higgs model
Introduce resonances that protect the potential

$$
\underbrace{W / B} \underbrace{\mathcal{L}^{\pi}=\frac{f^{2}}{4} \operatorname{Tr}\left[\left(D_{\mu} U_{1}\right)^{t} D^{\mu} U_{1}\right]^{\top}} \underbrace{\substack{I_{2}}}_{\frac{f^{2}}{4} \operatorname{Tr}\left[\left(D_{\mu} U_{2}\right)^{t} D^{\mu}{ }_{2}\right]}
$$

Each U is a Goldstone matrix of $\quad \mathrm{SO}(5)_{L} \times \mathrm{SO}(5)_{R} / \mathrm{SO}(5)$ $10+10$ scalar d.of reduced to 4 by gauging $\rho \in \mathrm{SO}(5), \widetilde{\rho} \in \mathrm{SO}(4)$

$$
\begin{aligned}
& D_{\mu} U_{1}=\partial_{\mu} U_{1}-i A_{\mu} U_{1}+i g_{*} U_{1} \rho_{\mu} \\
& D_{\mu} U_{2}=\partial_{\mu} U_{2}-i g_{*} \rho_{\mu} U_{2}+i \widetilde{g}_{*} U_{2} \widetilde{\rho}_{\mu}
\end{aligned}
$$

Models of Composite Higgs

The Discrete Composite Higgs model

Higgs is Goldstone under three symmetry groups :

$$
\mathrm{SO}(5)_{L}^{1} \quad \mathrm{SO}(5)_{R}^{1} \times \mathrm{SO}(5)_{L}^{2} \quad \mathrm{SO}(5)_{R}^{2}
$$

Collective Breaking

(Arkani-Hamed, Cohen, Georgi)
EWSB effects only through the breaking of all groups

Models of Composite Higgs

The Discrete Composite Higgs model

Higgs Potential is now finite at one loop
$V^{(1)}(h / f)=\Lambda^{2} f^{2}\left(\frac{\Lambda}{4 \pi f}\right)^{2}\left(\frac{g f}{\Lambda}\right)^{2}\left(\frac{g_{*} f}{\Lambda}\right)^{2}\left(\frac{\widetilde{g}_{*} f}{\Lambda}\right)^{2} v(h / f)$
Careful analysis reveals stronger $\left(g_{*}^{4}\right)$ suppression

Similar protection mechanism for S and T

Models of Composite Higgs

The Discrete Composite Higgs model

Fermionic sector :

Top Partners:

$$
\psi, \widetilde{\psi} \in \mathbf{5}=\left(\begin{array}{cc}
T & X_{5 / 3} \\
B & T_{2 / 3}
\end{array}\right) \otimes \widetilde{T}
$$

$\mathcal{L}_{\text {mix }}=\bar{q}_{L}{ }^{i} \Delta_{L}^{i I}\left(U_{1}\right)_{I J} \psi^{J}+\bar{t}_{R} \Delta_{R}^{I}\left(U_{1}\right)_{I J} \psi^{J}+\bar{\psi}^{I} \Delta_{I}^{J}\left(U_{2}\right)_{J K} \widetilde{\psi}^{K}$

个
Partial compositeness (Kaplan 1991;)

$$
\Delta \simeq y f
$$

$$
y_{t} \simeq y_{L} y_{R} / g_{\rho}
$$

The Higgs Potential

Dominated by fermionic contribution

Gives realistic EWSB only if : $y_{L} \simeq 2 y_{R} \simeq \sqrt{y_{t} g_{\rho}}$

The Higgs quartic is of order $V^{(4)} \sim \frac{N_{c}}{16 \pi^{2}} y^{4}\langle h\rangle^{4}$

$$
m_{H} \sim 4 \sqrt{2 N_{c}}\left(\frac{g_{\rho}}{4 \pi}\right) m_{t}
$$

The Higgs Potential

However

The naive estimate fails if there are light top partners

The Higgs Potential

However

The naive estimate fails if there are light top partners Higgs is too heavy without light partners!

The Higgs Potential

The Light Top Partners enhance m_{t} :

$$
\begin{gathered}
\Delta \cdot \bar{t} T+m_{T} \cdot \bar{T} T \Longrightarrow \tan \theta=\frac{\Delta}{m_{T}}=\frac{y f}{m_{T}} \\
m_{t} \sim M_{T} \frac{y_{L} y_{R} f^{2}}{m_{T_{-}} m_{\widetilde{T}_{-}}} \sqrt{\xi}
\end{gathered}
$$

Since the estimate of the quartic is unchanged :

$$
\frac{m_{H}}{m_{t}} \simeq \frac{\sqrt{N_{c}}}{\pi} \frac{m_{T_{-}} m_{\widetilde{T}_{-}}}{f} \sqrt{\frac{\log \left(m_{T_{-}} / m_{\widetilde{T}_{-}}\right)}{m_{T_{-}}^{2}-m_{\widetilde{T}_{-}}^{2}}}
$$

The Higgs Potential

Light Higgs wants Light Partners :

The Higgs Potential

Exotic Bidoublet is even lighter :

The Higgs Potential

LHC has already probed part of this plot :

Conclusions and Outlook

- The DCHM is a complete, minimal model of CH (simple enough to be implemented in a MG card)
- Applications:
I) Provide a benchmark model to visualize impact of exclusion

2) Playground for verifying (discovering) general aspects of CH
3) Parametrize the data! in case of discovery

Conclusions and Outlook

\checkmark LHC is already testing the CH , much more at 14 TeV :
I) Top Partners
2) Higgs couplings
3) KK-Gluons
4) EW resonances

The Higgs Potential

Dominated by fermionic contribution :

$$
V(h / f)=c\left[\left(y_{L}\right)^{2}-4\left(y_{R}\right)^{2}\right] \frac{N_{c}}{16 \pi^{2}} \frac{m_{\rho}^{4}}{g_{\rho}^{2}} \sin ^{2}\left(\frac{h}{f_{\pi}}\right)+\frac{N_{c}}{16 \pi^{2}} m_{\rho}^{4}\left(\frac{y^{2}}{g_{\rho}^{2}}\right)^{2} v(h / f)
$$

Cancel the leading term in order to get realistic EWSB: $\quad y_{L} \simeq 2 y_{R} \simeq \sqrt{y_{t} g_{\rho}}$
The Higgs quartic must therefore be estimated from the subleading term :

$$
V^{(4)} \sim \frac{N_{c}}{16 \pi^{2}} y^{4}\langle h\rangle^{4} \longmapsto m_{H} \sim 4 \sqrt{2 N_{c}}\left(\frac{g_{\rho}}{4 \pi}\right) m_{t}
$$

