Electroweak corrections in Higgs-boson production & uncertainties in Higgs-boson decays

Ansgar Denner, University of Würzburg

Zurich phenomenology workshop: Higgs search confronts theory Zurich, January 10, 2012

- Introduction
- Electroweak corrections to Higgs strahlung off W/Z bosons
- SM Higgs branching ratios with theoretical uncertainties
- Higgs production and decay in SM4

Electroweak (EW) corrections for Higgs production

Higgs production processes:

- gluon fusion: $gg \rightarrow H$ NLO EW $\sim 5\%$ Aglietti, Bonciani, Degrassi, Vicini '04, '06 Degrassi, Maltoni '04 Actis, Passarino, Sturm, Uccirati '08
- vector-boson fusion: $qq \rightarrow Hjj$ NLO EW $\sim 5\% \sim$ NLO QCD

Ciccolini, Denner, Dittmaier '07 Figy, Palmer, Weiglein '10

• associated Higgs production: $qq \rightarrow HW/HZ$ NLO EW: $\mathcal{O}(5-10\%) \sim 1/3$ NLO QCD Ciccolini, Krämer, Dittmaier '03

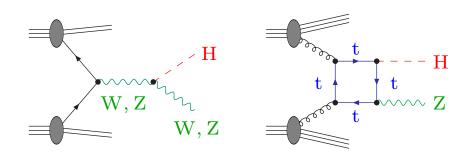
Higgs decays:

Julius-Maximilians-

WÜRZBURG

- $H \rightarrow 4f$ NLO EW: $\mathcal{O}(5-10\%)$ Bredenstein, Denner, Dittmaier, Weber '05
- $H \rightarrow \gamma \gamma$ NLO EW: few % Actis, Passarino, Sturm, Uccirati '07

larger corrections for distributions or SM4 (SM with 4th fermion generation)



Associated Higgs production

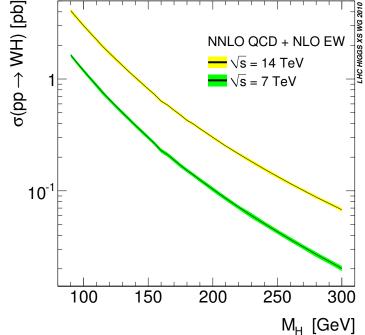
Zurich phenomenology workshop, January 10, 2012

Ansgar Denner (Würzburg)

Electroweak corrections in Higgs-boson production and decays - p.2

Julius-Maximilians-

UNIVFRSITÄI


- main search channel for low-mass Higgs at Tevatron (${
 m H}
 ightarrow {
 m b} ar{
 m b}$)
- at LHC: only small fraction of total Higgs cross section might contribute to discovery of low-mass Higgs and measurement of Hbb and HWW couplings
- small S/B ratio can be improved by selecting highly-boosted H and V back to back in transverse plane Butterworth et al. '08, '09
- control of background to 10% required in specific phase-space regions \Rightarrow precise theoretical differential predictions needed

Theoretical predictions for WH/ZH production

Status January 2011 LHC Higgs Cross Section Working Group [arXiv:1101.0593]

- NNLO QCD corrections for total cross section Brein, Djouadi, Harlander '04 based on Drell-Yan results from Hamberg, van Neerven, Matsuura '91 implemented in VH@NNLO
- NLO EW corrections for total cross section and stable gauge bosons Ciccolini, Dittmaier, Krämer '03
- combination of NNLO QCD and NLO EW assuming factorization Brein et al. '04 ع(pp → WH) [pb] $\sigma_{VH} = \sigma_{VH}^{VH@NNLO}(1 + \delta_{VH,EW})$ $+ \delta_{VZ} \sigma_{gg \rightarrow ZH}$ $\sigma_{\rm gg \rightarrow ZH}$ contributes 2–6% (4–12%) at $\sqrt{s} = 7 \,\mathrm{TeV} (14 \,\mathrm{TeV})$ 10^{-1} scale uncertainty $\sim 1 - 2\%$ at NNLO 100 • PDF + α_s uncertainty (PDF4LHC) $\sim 3-5\%$

Higgs cross section WG '11

Julius-Maximilians-

New developments in 2011

Julius-Maximilians-

- NNLO corrections beyond Drell–Yan with Higgs radiation from top loops for total cross section of WH and ZH production
 Brein, Harlander, Wiesemann, Zsirke [arXiv:1111.0761]
 ⇒ talk of Robert Harlander
- fully differential NNLO QCD corrections to Drell-Yan-like contributions for WH production including Higgs and vector-boson decays
 Ferrara, Grazzini, Tramontano [arXiv:1107.1164]
- fully differential NLO EW corrections to WH/ZH production including vector-boson decays
 Denner, Dittmaier, Kallweit, Mück [arXiv:1112.5142]
 implemented in Monte Carlo program HAWK (new release in preparation)

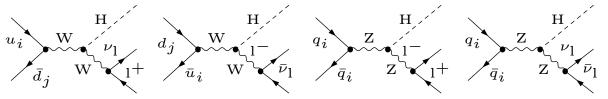
 → this talk

Denner, Dittmaier, Kallweit, Mück [arXiv:1111.6395]

Julius-Maximilians-

UNIVFRSITÄT

WÜRZBURG


• complete NLO electroweak corrections to

$$pp/p\bar{p} \rightarrow H + W/Z \rightarrow H + l^+ \nu_l/l^- \bar{\nu}_l/l^- l^+/\nu_l \bar{\nu}_l + X$$

including photon-induced processes (using MRST2004QED PDFs)

• recalculation of NLO QCD corrections

Feynman diagrams for LO processes

- leptons and quarks considered as massless
 - Iepton masses appear as regulators of collinear divergences
 - quark-mixing matrix appears only as global factor
- $b\bar{b}$ annihilation treated in LO only: contribution $\leq 1(3)\%$ for $\sqrt{s} = 7(14) \text{ TeV}$

• G_{μ} scheme for α_{em} (resums higher-order corrections: running α , ρ parameter)

Tools

- generation of Feynman diagrams with FeynArts version 1 and 3
 Küblbeck, Böhm, Denner, Eck '90,'92 Hahn '01
- algebraic simplifications using two independent in-house programs implemented in *Mathematica*, one building upon POLE Meier '05 and FORMCALC Hahn, Perez-Victoria '99, Hahn '00
- numerically stable reduction of tensor integrals according to Denner, Dittmaier, NPB658 (2003)175 [hep-ph/0212259], NPB734 (2006) 62 [hep-ph/0509141]
- gauge-invariant treatment of W and Z resonances with complex-mass scheme Denner, Dittmaier, Roth, Wieders '05
- scalar integrals for complex masses based on Denner, Dittmaier, NPB844 (2011) 199 [arXiv:1005.2076]
- soft and collinear singularities: dipole subtraction formalism

Catani, Seymour '96, Dittmaier '99; Dittmaier, Kabelschacht, Kasprzik '08

- phase-space integration: multi-channel Monte Carlo integration with adaptive optimization Berends, Kleiss, Pittau '94; Kleiss, Pittau '94
- two independent calculations

• photon–lepton recombination

Julius-Maximilians-

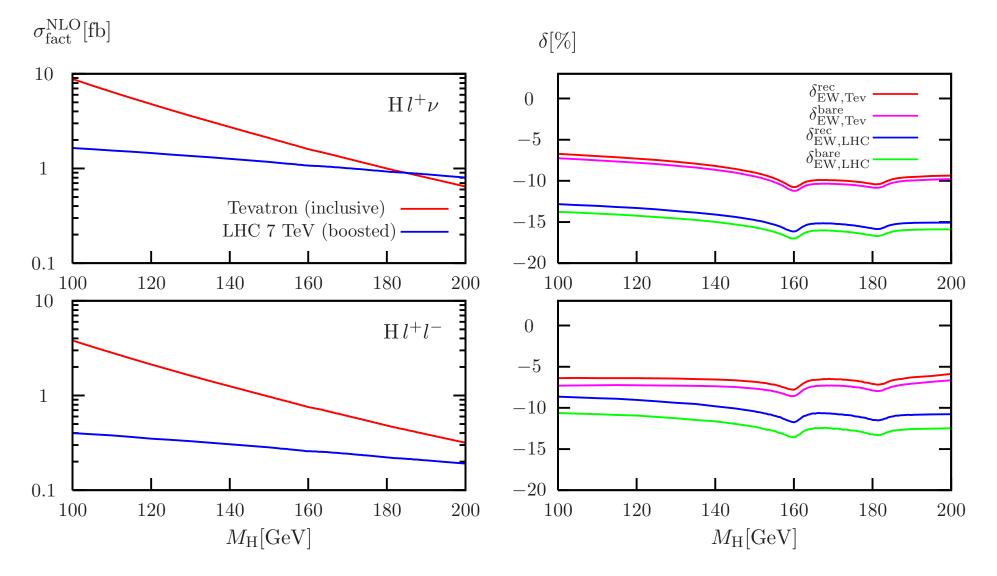
WÜRZBURG

- ► for electrons recombine if $R_{\gamma l} < 0.1$, $R_{\gamma l} = \sqrt{(y_l y_\gamma)^2 + \phi_{l\gamma}^2}$
- ▶ no recombination for muons $\Rightarrow \log(m_{\mu})$ terms
- charged leptons must obey $p_{\mathrm{T},l} > 20 \,\mathrm{GeV}, \qquad |y_l| < 2.5$
- missing transverse momentum for channels with neutrino(s) $p_{\rm T}>25\,{\rm GeV}$
- optional additional cuts (boosted Higgs setup) $p_{T,H} > 200 \,\text{GeV}, \quad p_{T,W/Z} > 190 \,\text{GeV}$ (symmetric cuts would cause large corrections near the cut in the $p_{T,H}$ distribution)

stable Higgs boson

renormalization and factorization scale: $\mu_{
m F}=\mu_{
m R}=M_V+M_{
m H}$

$M_{\rm H} = 120 \,{\rm GeV}$

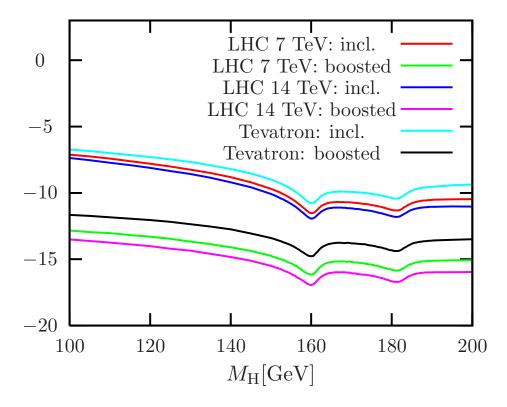

Julius-Maximilians-UNIVERSITÄT

WÜRZBURG

Denner, Dittmaier, Kallweit, Mück '11

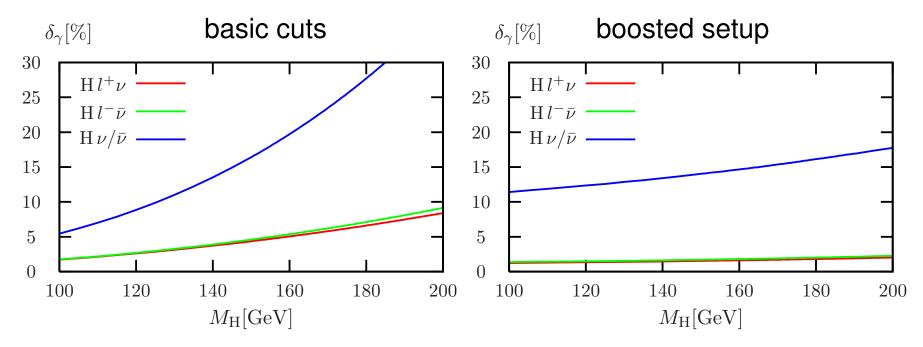
channel	$ \operatorname{Hl}^+\nu_{\mathrm{l}} + X $	$ \operatorname{Hl}^- \bar{\nu}_{\mathrm{l}} + X $	$ \operatorname{Hl}^+ \mathrm{l}^- + X$	$\mathrm{H}\nu_{\mathrm{l}}\bar{\nu}_{\mathrm{l}} + X$	$\mathrm{H}\nu_{\mathrm{l}}/\bar{\nu}_{\mathrm{l}}+X$
$\sigma_0/{ m fb}$	1.50846(7)	0.66292(3)	0.35349(2)	0.74759(3)	0.058236(9)
$\sigma^{\rm LO}/{\rm fb}$	1.4183(2)	0.60926(9)	0.32845(5)	0.69519(9)	0.05417(3)
$\delta_{ m EW}^{ m bare}/\%$	-14.2	-14.0	-10.9	-6.9	-12.5
$\delta_{ m EW}^{ m rec}/\%$	-13.3	-13.0	-9.0	-6.9	-14.5
$\delta_{ m QCD}/\%$	+9.5	+9.4	+9.8	+9.8	+6.8
$(K_{\rm QCD}-1)/\%$	+16.5	+19.1	+18.1	+18.1	+14.9
$\delta_\gamma/\%$	+1.3	+1.5	+0.0	+0.0	+12.5
$\sigma_{ m fact}^{ m NLO}/{ m fb}$	1.4522(4)	0.6406(2)	0.35329(7)	0.7646(2)	0.06043(6)
$\sigma_{ m HAWK}^{ m NLO}/{ m fb}$	1.4713(4)	0.6488(2)	0.35639(7)	0.7697(2)	0.06100(6)

- LO predictions with LO PDFs: σ_0 , with NLO PDFs: σ^{LO}
- NLO QCD prediction: $\sigma_{\text{QCD}}^{\text{NLO}} = \sigma_0 \left(1 + \delta_{\text{QCD}}\right) = K_{\text{QCD}} \sigma^{\text{LO}}$
- NLO prediction of HAWK: $\sigma_{\text{HAWK}}^{\text{NLO}} = \sigma_0 \times (1 + \delta_{\text{QCD}} + \delta_{\gamma} + \delta_{\text{EW}})$
- improved NLO prediction based on factorization: $\sigma_{\text{fact}}^{\text{NLO}} = \sigma_{\text{QCD}}^{\text{NLO}} \times (1 + \delta_{\text{EW}}) + \sigma_0 \delta_{\gamma}$



Julius-Maximilians-

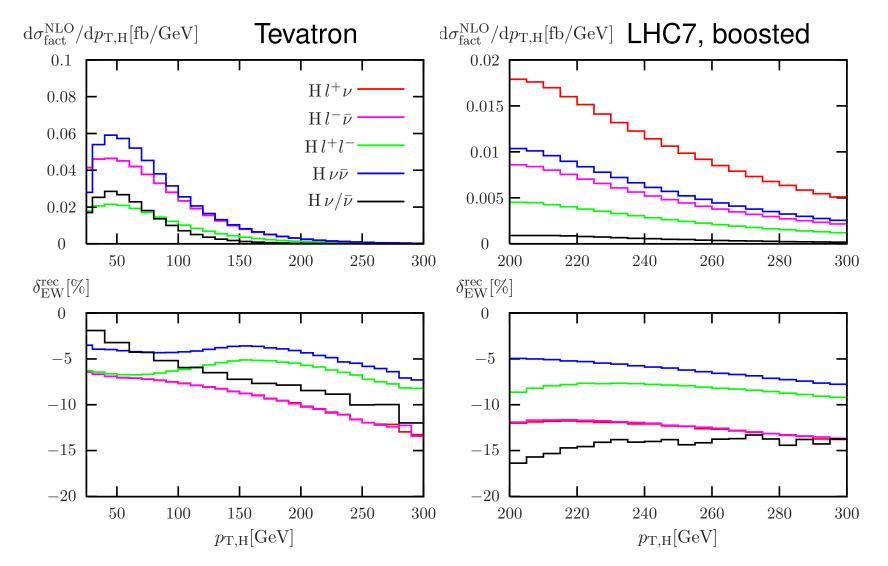
Comparison of different colliders, inclusive and boosted setup

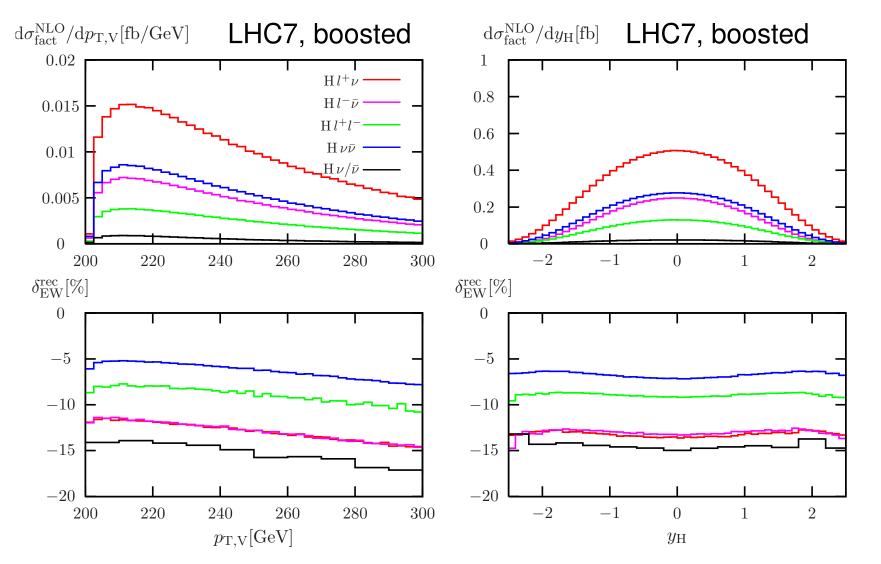

 $\delta_{\rm EW}^{\rm rec} [\%]$

Julius-Maximilians-

- corrections larger for boosted setup
- relative corrections depend only weakly on collider energy
- threshold singularities are regularized by complexmass scheme

relative corrections from photon-induced processes for LHC7




- photon-induced corrections for boosted setup and identified charged leptons below 1-2% (contributions to HZ even smaller)
- corrections up to 10% for inclusive setup and identified charged leptons
- larger corrections for $H\nu_l/\bar{\nu}_l$ channel owing to collinear logarithms phenomenologically relevant?

Julius-Maximilians-

UNIVERSITÄT WÜRZBURG Distribution in transverse momentum of Higgs boson

Denner, Dittmaier, Kallweit, Mück '11

Julius-Maximilians-

SM Higgs branching ratios with uncertainties

Zurich phenomenology workshop, January 10, 2012

Ansgar Denner (Würzburg)

Electroweak corrections in Higgs-boson production and decays - p.14

Predictions for SM Higgs branching ratios with uncertainties LHC HIGGS XS WG '12, Denner et al. (BR subgroup) [arXiv:1107.5909]

Tools

Julius-Maximilians-

WÜRZBURG

- PROPHECY4F for $H \to WW/ZZ \to 4f$ (complete QCD and EW NLO) Bredenstein, Denner, Dittmaier, Weber '06
- HDECAY for other channels Djouadi, Kalinowski, Mühlleitner, Spira '98, '10
- EW NLO corrections to ${
 m H} o \gamma\gamma$ and ${
 m H} o {
 m gg}$ Actis, Passarino, Sturm, Uccirati '08

Strategy

- calculate all partial decay widths as accurate as possible
- determine total width: $\Gamma_{\rm H} = \Gamma^{\rm HD} \Gamma^{\rm HD}_{\rm ZZ} \Gamma^{\rm HD}_{\rm WW} + \Gamma^{\rm Proph.}_{4f}$
- determine branching ratios $BR_i = \Gamma_i / \Gamma_H$
- PROPHECY4F includes all interferences : $\Gamma_{4f}^{\text{Proph.}} = \Gamma_{\text{H} \rightarrow \text{W}^*\text{W}^* \rightarrow 4f} + \Gamma_{\text{H} \rightarrow \text{Z}^*\text{Z}^* \rightarrow 4f} + \Gamma_{\text{WW}/\text{ZZ-int.}}$

earlier estimate Baglio, Djouadi '10

• uncertainties in input parameters:

Parameter	Central value	Uncertainty		$\overline{\mathrm{MS}}$ masses $m_{\mathrm{q}}(m_{\mathrm{q}})$
$\alpha_{\rm s}(M_{\rm Z})$	0.119	± 0.002	$\pm 1.7\%$	
$m_{f c}$	$1.42{ m GeV}$	$\pm 0.03{\rm GeV}$	$\pm 2.1\%$	$1.28{ m GeV}$
$m_{ m b}$	$4.49{ m GeV}$	$\pm 0.06{\rm GeV}$	$\pm 1.3\%$	$4.16{ m GeV}$
$m_{ m t}$	$172.5{ m GeV}$	$\pm 2.5{ m GeV}$	$\pm 1.4\%$	$165.4{ m GeV}$

one-loop pole masses show negligible dependence on $\alpha_{\rm s}$

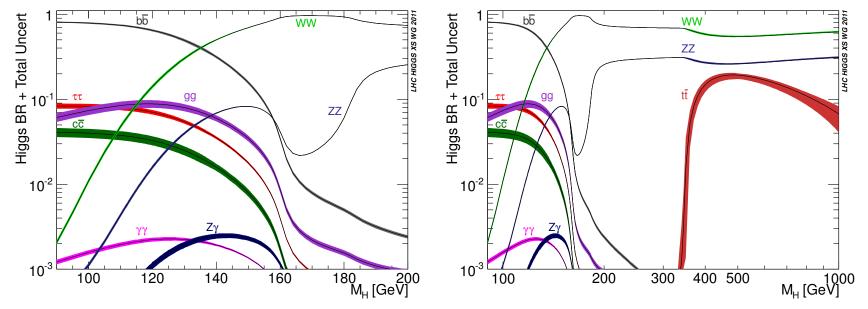
 \Rightarrow use as independent parameters (HDECAY)

- uncertainties from G_{μ} , $M_{\rm Z}$, $M_{\rm W}$, m_l below one per mille \Rightarrow neglected
- determine variation of Γ_i and BR_i for each input parameter separately
- combine uncertainties in quadrature \Rightarrow total parametric uncertainty (PU)

Estimate of missing higher-order corrections (THU) from

- variation of QCD scales by factor 2 up and down
- known omitted corrections or accuracy of approximations
- missing higher-order EW corrections

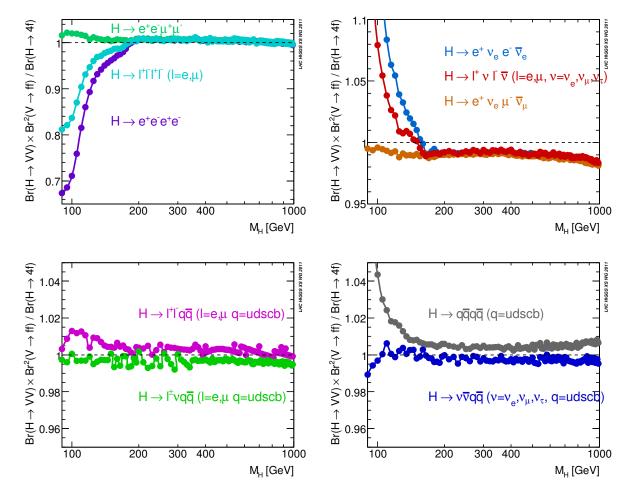
Partial Width	QCD	Electroweak	Total
$H \rightarrow b\bar{b}/c\bar{c}$	$\sim 0.1\%$	$\sim 12\%$ for $M_{ m H} \lesssim 135{ m GeV}$	$\sim 2\%$
$\mathrm{H} \to \tau^+ \tau^- / \mu^+ \mu^-$		$\sim 12\%$ for $M_{ m H} \lesssim 135{ m GeV}$	$\sim 2\%$
$H \to t\bar{t}$	$\lesssim 5\%$	$\lesssim 25\%$ for $M_{ m H} < 500{ m GeV}$	$\sim 5\%$
		$\sim 0.1 (rac{M_{ m H}}{1 { m TeV}})^4$ for $M_{ m H} > 500 { m GeV}$	$\sim 510\%$
$\mathrm{H} \to \mathrm{gg}$	$\sim 3\%$	$\sim 1\%$	$\sim 3\%$
${\rm H} \to \gamma \gamma$	< 1%	< 1%	$\sim 1\%$
$H \to Z\gamma$	< 1%	$\sim 5\%$	$\sim 5\%$
$\mathrm{H} \rightarrow \mathrm{WW}/\mathrm{ZZ} \rightarrow 4f$	< 0.5%	$\sim 0.5\%$ for $M_{ m H} < 500{ m GeV}$	$\sim 0.5\%$
		$\sim 0.17 (rac{M_{ m H}}{1{ m TeV}})^4$ for $M_{ m H} > 500{ m GeV}$	$\sim 0.515\%$


 $M_{\rm H} > 500 \,{\rm GeV}$: higher-order heavy-Higgs corrections dominate error

- THU on BRs calculated for each source (channel) separately
- individual THUs and PU are combined linearly

Results for SM branching ratios

LHC HIGGS XS WG '12, Denner et al. '11



- THU = $\mathcal{O}(10\%)$ for $H \to gg, H \to Z\gamma$ and $H \to t\bar{t}$
- THU < few % for $H \to b\bar{b}$, $H \to c\bar{c}$ and $H \to \tau^+ \tau^-$
- PU = O(10%) for $H \to c\bar{c}$ and O(5%) for $H \to gg$ (mainly from α_s and m_c)
- PU $\sim 3\%$ for ${\rm H} \rightarrow {\rm b} {\rm \bar{b}}$ from $m_{\rm b}$
- total uncertainty for ${\rm H} \to \gamma \gamma$ up to 5%
- THU and PU $\sim 1\%$ (2% for small $M_{\rm H}$) for ${\rm H} \rightarrow {\rm ZZ}$ and ${\rm H} \rightarrow {\rm WW}$ large uncertainties for partial width at large $M_{\rm H}$ cancel in BR

Tanaka, LHC HIGGS XS WG '12

Julius-Maximilians-

WÜRZBURG

interference effects: $\frac{\text{BR}(\text{H} \rightarrow VV)\text{BR}(V \rightarrow f\bar{f})^2}{\text{BR}(\text{H} \rightarrow 4f)}$ $M_{\text{H}} = 120 \text{ GeV}:$ • 11% for $\text{H} \rightarrow \text{e}^+\text{e}^-\text{e}^+\text{e}^-$

- -5.4% for $H \rightarrow e^+ \nu_e e^- \bar{\nu}_e$
- $M_{\rm H} > 200 \,{\rm GeV}$:

• < 1%

Higgs production and decay in SM4

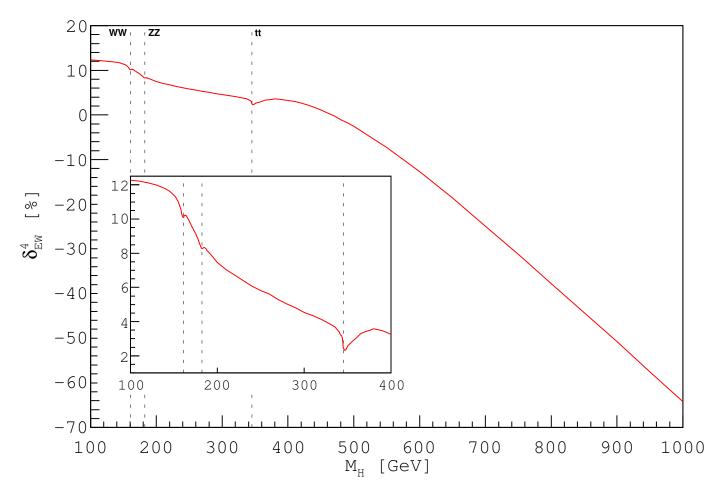
Zurich phenomenology workshop, January 10, 2012

Ansgar Denner (Würzburg)

Electroweak corrections in Higgs-boson production and decays - p.19

 \Rightarrow factor $\lesssim 9$ enhancement in LO Georgi, Glashow, Machacek, Nanopoulos '78

large NLO and NNLO QCD corrections Spira, Djouadi, Graudenz, Zerwas '95, Anastasiou et al '10, '11


- screening: LO and NLO QCD corrections depend weakly on precise values of heavy fermion masses
- to escape EW precision constraints choose

$$m_{b'} = m_{l'} = m_{\nu'} = 600 \,\text{GeV},$$

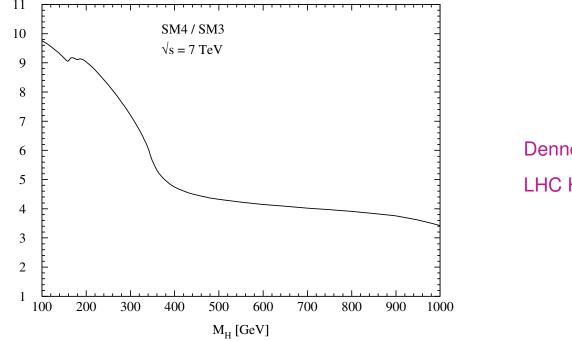
$$m_{t'} = m_{b'} + \left[1 + \frac{1}{5} \ln\left(\frac{M_{\text{H}}}{115 \,\text{GeV}}\right)\right] 50 \,\text{GeV},$$

- large novel Yukawa couplings ⇒ sizeable EW corrections depending strongly on heavy fermion masses
- WORK by LHC HIGGS XS WG '12, Denner et al. [arXiv:1111.6395]

Passarino, Sturm, Uccirati '11, LHC HIGGS XS WG '12

relative (2-loop) EW corrections to $\mathrm{gg} \to \mathrm{H}$ in SM4

theoretical uncertainty $\sim 2\%$ for $M_{\rm H} < 600 \,{\rm GeV}$


Higgs production cross section in SM4

assume factorization of EW and QCD corrections

(violation small Anastasiou, Boughezal, Petriello '08, non-factorizable EW effects < 5%)

 $\sigma = \sigma^{\rm LO} \left(1 + \delta_{\rm QCD} \right) \left(1 + \delta_{\rm EW} \right)$

ratio of Higgs production cross section via gluon fusion (SM4/SM3) including NNLO QCD and NLO EW corrections

Denner et al. '11 LHC HIGGS XS WG '12

Julius-Maximilians-

EW corrections to Higgs partial widths in SM4

enhanced Yukawa couplings \Rightarrow large EW corrections \Rightarrow large uncertainties

- ${
 m H}
 ightarrow {
 m WW/ZZ}
 ightarrow 4f$: (PROPHECY4F) Denner, Dittmaier, Mück, Weber
 - ► NLO EW: -85%, $\delta_{\text{EW}} \sim 2N_c X_A \left[-\frac{5}{6}(1+x) + \frac{x}{1-x} \ln x \right]$ $x = m_B^2/m_A^2, X_A = G_\mu m_A^2/(8\sqrt{2}\pi^2)$ Chanowitz et al. '78
 - ► NNLO EW+QCD: +15% Kniehl '96; Djouadi, Gambino, Kniehl '97
 - uncertainty: $\sim 50\%$
- $\mathbf{H} \to f\bar{f}$:

Julius-Maximilians-

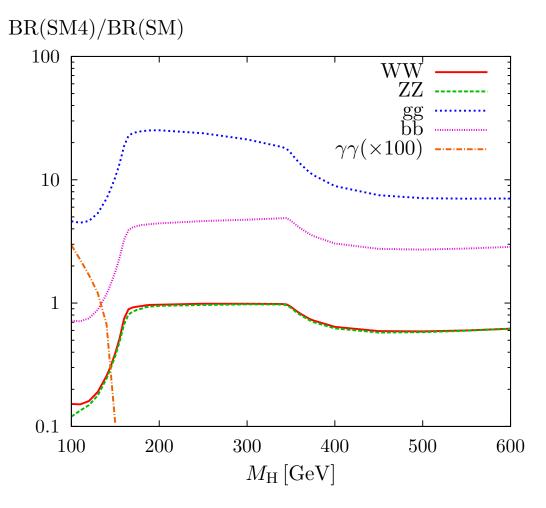
- ► NNNNLO QCD: +20%
- NLO EW: +40%, $\delta_{\rm EW} \sim 2N_c X_A \left[\frac{7}{6} (1+x) + \frac{x}{1-x} \ln x \right]$
- NNLO EW+QCD: +20% Kniehl '96; Djouadi, Gambino, Kniehl '97 uncertainty: $\sim 10\%$
- $H \rightarrow gg$
 - > NNNLO QCD: +90%
 - \blacktriangleright NLO EW: as for $gg \to H$ $\hfill Passarino, Sturm, Uccirati '11$

EW corrections to Higgs decays in SM4

- ${
 m H}
 ightarrow \gamma \gamma$ Passarino, Sturm, Uccirati '11
 - ► NLO EW: -320% for $M_{\rm H} = 100 \,{\rm GeV}$ large cancellations between W and *f* loops at LO \Rightarrow square amplitude

$$|A|^2 = |A_{\rm LO} + A_{\rm NLO}|^2 = |A_{\rm LO}|^2 (1 + \delta_{\rm EW}^{(4)})$$

 \Rightarrow NLO EW: -65% for $M_{\rm H} = 100 \,{\rm GeV}$


• uncertainty $\sim 14\%$

Julius-Maximilians-UNIVERSITÄT

$M_{ m H}$ [GeV]	$\delta_{ ext{EW}}^{(4)}\left[\% ight]$	missing h.o. [%]
100	-64.5	± 13.9
110	-74.4	± 13.9
120	-83.3	± 13.9
130	-90.8	+13.9 - 9.2
140	-96.6	+13.9 - 3.4
150	-99.7	+13.9 - 0.3

EW corrections to Higgs decays in SM4

Ratio of branching fractions SM4/SM3 for different channels

Julius-Maximilians-

Conclusion

Conclusion

- $\bullet\,$ Electroweak corrections to Higgs strahlung off $\rm W/Z$ bosons with decays
 - implemented in generator HAWK (new release in preparation) http://omnibus.uni-freiburg.de/sd565/programs/hawk/hawk.html
 - electroweak corrections of order 10%, larger for distributions
 - relative EW corrections (insensitive to PDFs) can be used to improve NNLO-QCD predictions assuming factorization
- SM Higgs branching ratios with theoretical uncertainties predictions for branching ratios including
 - parametric uncertainties from $\alpha_{\rm s}$, $m_{\rm c}$, $m_{\rm b}$, $m_{\rm t}$
 - theoretical uncertainties from missing higher orders

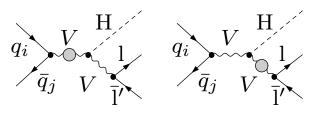
LHC Higgs Cross Section Working Group: https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CrossSections

 Higgs production and decay in SM4 large masses of heavy fermions ⇒ enhanced Yukawa couplings ⇒ large EW corrections ⇒ large uncertainties

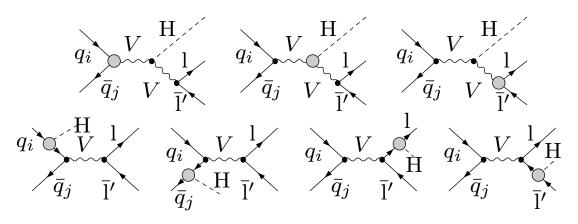
Julius-Maximilians-

Backup

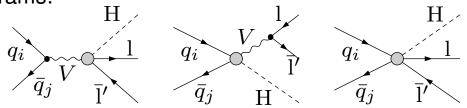
Ansgar Denner (Würzburg)


Electroweak corrections in Higgs-boson production and decays - p.26

Classes of one-loop Feynman diagrams


Self-energy diagrams:

Julius-Maximilians-


WÜRZBURG

Vertex diagrams:

Box and pentagon diagrams:

 $\mathcal{O}(200)$ one-loop diagrams per tree diagram

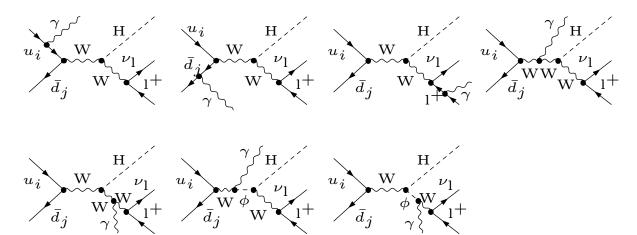
Algebraic reduction of tensor integrals

For details see Denner, Dittmaier NPB734 (2006) 62 [hep-ph/0509141]

- 2-point integrals: numerically stable direct calculation
- 3-point and 4-point integrals: Passarino–Veltman reduction
 → inverse Gram determinants of up to three momenta
 - \hookrightarrow serious numerical instabilities where $\det G \to 0$

(at phase-space boundary, but also within phase space !)

two hybrid methods


Julius-Maximilians-

- (i) Passarino–Veltman ⊕ expansions in small Gram and other kinematical determinants (see also Ellis et al. '05)
- (ii) Passarino–Veltman ⊕ analytical special cases
 ⊕ seminumerical method (in this calculation for checks only)
 (numerical calculation of logarithmic Feynman-parameter integral and algebraic reduction to this basis integral)
 (see also Binoth et al. '05, Ferroglia et al. '02)
- 5-point integrals → five 4-point integrals Melrose '65; Denner, Dittmaier '02, '05 stable reduction without inverse Gram determinants

Real corrections

Feynman diagrams:

photon-induced processes:

diagrams obtained by crossing the photon into the initial state

matrix elements:

evaluated with Weyl-van der Waerden spinor technique

Dittmaier '99

• photonic initial-state radiation:

Julius-Maximilians-

WÜRZBURG

coll. singularity absorbed by a redefinition of the PDFs in DIS scheme effect on PDFs at per-cent level at most Spiesberger '94

- collinear final-state radiation off leptons two different setups
 - inclusive: recombination with leptons \Rightarrow IR-safe
 - exclusive: e.g. muons \Rightarrow non-collinear safe \Rightarrow logarithms of m_{μ} treated with appropriate subtraction formalism

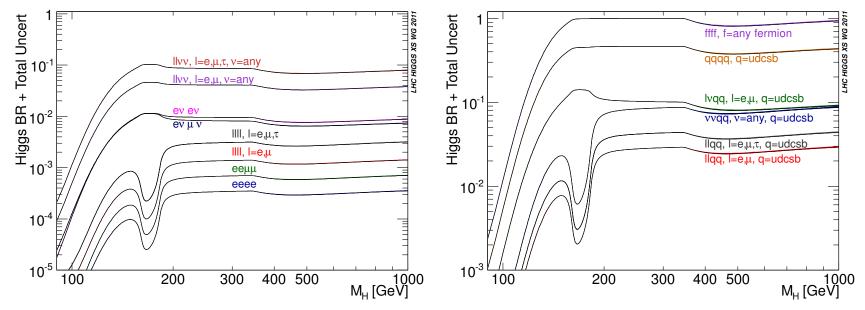
Dittmaier, Kabelschacht, Kasprzik '08

- photon-induced processes, $\gamma \rightarrow q\bar{q}^*/\bar{q}q^*$ splitting collinear singularities removed via redefinitions of quark PDFs evaluated with MRSTQED2004 PDF set Martin et al. '04
- photon-induced processes, γ → ll̄*/l̄l* splitting collinear singularity if charged leptons escape into the beam pipe collinear singularity cannot be absorbed in (lepton) pdf
 ⇒ explict logarithm of lepton mass in corrections [log(m_e) for definiteness]

 $M_{\rm H} = 120 \,{\rm GeV}$

Julius-Maximilians-

WÜRZBURG


Denner, Dittmaier, Kallweit, Mück '11

channel	$ \operatorname{Hl}^+\nu_{\mathrm{l}} + X $	$ \operatorname{Hl}^{-} \bar{\nu}_{\mathrm{l}} + X$	$ \operatorname{Hl}^+ \operatorname{l}^- + X$	$\mathrm{H}\nu_{\mathrm{l}}\bar{\nu}_{\mathrm{l}} + X$	$\mathrm{H}\nu_{\mathrm{l}}/\bar{\nu}_{\mathrm{l}}+X$
$\sigma_0/{ m fb}$	4.1232(2)	4.1229(2)	1.82773(5)	4.1480(1)	1.6063(2)
$\sigma^{ m LO}/{ m fb}$	3.6930(5)	3.6926(5)	1.6484(1)	3.7476(4)	1.4355(4)
$\delta_{ m EW}^{ m bare}/\%$	-7.8	-7.8	-7.2	-4.1	-0.9
$\delta^{ m rec}_{ m EW}/\%$	-7.3	-7.3	-6.3	-4.1	-3.5
$\delta_{ m QCD}/\%$	+24.9	+24.9	+24.6	+24.9	+25.1
$(K_{\rm QCD}-1)/\%$	+39.5	+39.5	+38.1	+38.2	+40.0
$\delta_\gamma/\%$	+0.3	+0.3	+0.0	-0.0	+1.0
$\sigma_{ m fact}^{ m NLO}/{ m fb}$	4.7884(5)	4.7872(5)	2.1332(1)	4.9696(3)	1.9566(4)
$\sigma_{ m HAWK}^{ m NLO}/{ m fb}$	4.8635(5)	4.8622(5)	2.1616(1)	5.0115(3)	1.9706(4)

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

Results for SM 4f branching ratios

LHC HIGGS XS WG '12, Denner et al. '11

SM Higgs branching ratios with uncertainties

Channel	$M_{ m H}[{ m GeV}]$	BR	$\Delta m_{\rm C}$	$\Delta m_{\rm b}$	$\Delta m_{ m t}$	$\Delta \alpha_{\rm S}$	PU	THU	Total
$\rm H \rightarrow b\bar{b}$	120	6.48E-01	-0.2%	+1.1%	+0.0%	-1.0%	+1.5%	+1.3%	+2.8%
	150	1.57E-01	$^{+0.2\%}_{-0.1\%}$	$^{-1.2\%}_{+2.7\%}$	$^{-0.0\%}_{+0.1\%}$	$^{+0.9\%}_{-2.2\%}$	$^{-1.5\%}_{+3.4\%}$	$^{-1.3\%}_{+0.6\%}$	$^{-2.8\%}_{+4.0\%}$
			$^{+0.1\%}_{-0.0\%}$	$^{-2.7\%}_{+3.2\%}$	$^{-0.1\%}_{+0.0\%}$	$^{+2.1\%}_{-2.5\%}$	$^{-3.5\%}_{+4.1\%}$	$^{-0.6\%}_{+0.5\%}$	$^{-4.0\%}_{+4.6\%}$
	200	2.40E-03	+0.0%	$^{+3.2\%}_{-3.2\%}$	+0.0% -0.1%	+2.5%	-4.1%	$^{+0.5\%}_{-0.5\%}$	-4.6%
	500	1.09E-04	-0.0%	+3.2%	+0.1%	-2.8%	+4.3%	+3.0%	+7.2%
			$+0.0\% \\ -0.2\%$	$\frac{-3.2\%}{-2.0\%}$	$rac{-0.1\%}{+0.1\%}$	+2.8% +1.4\%	$rac{-4.3\%}{+2.5\%}$	$rac{-1.1\%}{+3.6\%}$	$\frac{-5.4\%}{+6.1\%}$
	120	7.04E-02	+0.2%	+2.0%	+0.1%	$^{+1.4\%}_{-1.3\%}$	$^{+2.570}_{-2.4\%}$	+3.6%	-6.0%
	150	1.79E-02	-0.1%	-0.5%	+0.1%	+0.3%	+0.6%	+2.5%	+3.0%
$\mathrm{H} \to \tau^+ \tau^-$			$^{+0.1\%}_{-0.0\%}$	$^{+0.5\%}_{-0.0\%}$	$^{-0.1\%}_{+0.0\%}$	$^{-0.3\%}_{+0.0\%}$	-0.6% +0.0%	$^{-2.5\%}_{+2.5\%}$	$^{-3.1\%}_{+2.5\%}$
	200	2.87E-04	+0.0%	+0.0%	+0.0% -0.1%	+0.0% -0.0%	-0.1%	$^{+2.5\%}_{-2.5\%}$	$^{+2.5\%}_{-2.6\%}$
	500	1.53E-05	-0.0%	-0.0%	+0.1%	-0.1%	+0.1%	+5.0%	+5.0%
	000	1.002 00	+0.0%	+0.0%	-0.1%	+0.0%	-0.1%	-3.1%	-3.2%
	120	2.44E-04	-0.2%	-2.0%	+0.1%	+1.4%	+2.5%	+3.9%	+6.4%
	150	6.19E-05	$^{+0.2\%}_{-0.0\%}$	$^{+2.1\%}_{-0.5\%}$	$^{-0.1\%}_{+0.1\%}$	$^{-1.3\%}_{+0.3\%}$	$^{-2.5\%}_{+0.6\%}$	$^{-3.9\%}_{+2.5\%}$	$^{-6.3\%}_{+3.1\%}$
1			+0.0%	+0.5%	-0.1%	-0.3%	-0.6%	-2.5%	-3.2%
$H \rightarrow \mu^+ \mu^-$	200 9.96	9.96E-07	-0.0%	-0.0%	+0.1%	+0.0%	+0.1%	+2.5%	+2.6%
		0.002 07	-0.0%	+0.0%	-0.1%	-0.0%	-0.1%	-2.5%	-2.6%
	500	5.31E-08	-0.0% +0.0%	-0.0% +0.0%	$^{+0.1\%}_{-0.1\%}$	-0.0% +0.0%	$^{+0.1\%}_{-0.1\%}$	$^{+5.0\%}_{-3.1\%}$	+5.1%
			+6.0%	$\frac{+0.0\%}{-2.1\%}$	$\frac{-0.1\%}{+0.1\%}$	$\frac{+0.0\%}{-5.8\%}$	$\frac{-0.1\%}{+8.5\%}$	$\frac{-3.1\%}{+3.8\%}$	$\frac{-3.1\%}{+12.2\%}$
	120 3	3.27E-02	-5.8%	+2.2%	-0.1%	+5.6%	-8.5%	-3.7%	-12.2%
	150	7.93E-03	+6.2%	-0.6%	+0.1%	-6.9%	+9.2%	+0.6%	+9.7%
$H\rightarrowc\bar{c}$			$\mp 8:9\%$	$\pm 8:8\%$	∓8:1%	$\pm 6:8\%$	=9:3%	$\mp 8:5\%$	$+\overline{1}8:5\%$
	200	1.21E-04	-6.1%	+0.1%	-0.2%	+7.2%	-9.5%	-0.5%	-10.0%
	500	5.47E-06	+6.2%	-0.1%	+0.1%	-7.6%	+9.8%	+3.0%	+12.8%
			$\frac{-6.0\%}{-0.0\%}$	+0.1% -0.0%	$\frac{-0.1\%}{78.6\%}$	+7.6%	-9.7%	$\frac{-1.1\%}{-1.0\%}$	$\frac{-10.7\%}{107.8\%}$
	350	1.56E-02	+0.0% +0.0%	-0.0% +0.0%	-78.6% + 120.9%	$+0.9\% \\ -0.9\%$	$^{+120.9\%}_{-78.6\%}$	$^{+6.9\%}_{-12.7\%}$	+127.8% -91.3%
	000	360 5.14E-02	+0.0% -0.0%	+0.0%	-36.2%	+0.9%	+35.6%	+6.6%	+42.2%
$\mathrm{H} \to \mathrm{t} \bar{\mathrm{t}}$			-8:8%	$\pm 0.0\%$	$+35.6\%\ -6.8\%$	-8.7%	$^{-36.2\%}_{+6.2\%}$	$^{-12.2\%}_{+5.9\%}$	-48.4%+12.2%
$H \rightarrow t\bar{t}$	400	1.48E-01	+0.0% +0.0%	-0.0% +0.0%	-6.8% +6.2%	$^{+0.4\%}_{-0.3\%}$	+6.2% -6.8%	$^{+5.9\%}_{-11.1\%}$	$^{+12.2\%}_{-17.8\%}$
	500		+0.0% -0.0%	+0.0% -0.0%	$^{+0.2\%}_{-0.3\%}$	+0.3%	+0.1%	+4.5%	+4.6%
	500	1.92E-01	+0.0%	+0.0%	+0.1%	-0.2%	-0.3%	-9.5%	-9.8%

Julius-Maximilians-

UNIVERSITÄT WÜRZBURG

SM Higgs branching ratios with uncertainties

Channel	$M_{ m H}[{ m GeV}]$	BR	$\Delta m_{\rm C}$	$\Delta m_{\rm b}$	Δm_{t}	$\Delta \alpha_{\rm S}$	PU	THU	Total
	120	8.82E-02	-0.2%	-2.2%	-0.2%	+5.7%	+6.1%	+4.5%	+10.6%
	450		$^{+0.2\%}_{-0.1\%}$	$^{+2.2\%}_{-0.7\%}$	$^{+0.2\%}_{-0.3\%}$	$^{-5.4\%}_{+4.4\%}$	$^{-5.8\%}_{+4.4\%}$	$^{-4.5\%}_{+3.5\%}$	$^{-10.3\%}_{+7.9\%}$
$\mathrm{H} \to \mathrm{gg}$	150	3.46E-02	$\pm 8:1\%$	$\pm 8.6\%$	$\pm 8.3\%$	$+\frac{4}{3}:3\%$	+3:3%	+3:5%	$\mp 7.8\%$
/ 88	200	9.26E-04	-0.0%	+0.1%	+0.6%	+3.9% -3.8%	+3.9% -3.9%	+3.7% -3.7%	+7.0% -7.6%
	500	6.04E-04	-0.0%	-0.0%	+1.6%	+3.4%	+3.7%	+6.2%	+9.9%
	000	0.042 04	+0.0%	+0.0%	-1.6%	-3.3%	-3.7%	-4.3%	-7.9%
	120	2.23E-03	-0.2% +0.2%	$^{-2.0\%}_{+2.1\%}$	+0.0% +0.0%	$^{+1.4\%}_{-1.3\%}$	$^{+2.5\%}_{-2.4\%}$	$^{+2.9\%}_{-2.9\%}$	$+5.4\% \\ -5.3\%$
	150	1.37E-03	+0.2% +0.0%	$^{+2.170}_{-0.5\%}$	+0.0% +0.1%	+0.3%	+0.6%	+1.6%	+2.1%
$H \rightarrow \gamma \gamma$			$\pm 8:3\%$	$\pm 8:5\%$	$\pm 8:9\%$	7 8:3%	=8:6%	∓ 1:5%	$\pm 1:6\%$
	200	5.51E-05	-0.0%	+0.0%	-0.1%	-0.0%	-0.1%	-1.5%	-1.6%
	500	3.12E-07	-0.0%	-0.0%	+8.0%	-0.7%	+8.0%	+4.0%	+11.9%
	000	0.122 07	+0.0%	+0.0%	-6.5%	+0.7%	-6.6%	-2.1%	-8.7%
	120	1.11E-03	-0.3%	-2.1%	+0.0%	+1.4%	+2.5%	+6.9%	+9.4%
	150		$^{+0.2\%}_{-0.1\%}$	$^{+2.1\%}_{-0.6\%}$	$^{-0.1\%}_{+0.0\%}$	$^{-1.4\%}_{+0.2\%}$	$^{-2.5\%}_{+0.5\%}$	-6.8% +5.5%	$^{-9.3\%}_{+6.0\%}$
$H \rightarrow Z\gamma$	150	2.31E-03	$\pm 8:8\%$	$\pm 8:5\%$	7 8:0%	$\mp 8:8\%$	78:8%	+5.5%	+6.2%
11 / 21 /	200	1.75E-04	-0.0% -0.0%	$\pm 0.0\% + 0.0\%$	$^{+0.0\%}_{-0.1\%}$	+0.0% -0.0%	$^{+0.0\%}_{-0.1\%}$	$^{+5.5\%}_{-5.5\%}$	$^{+5.5\%}_{-5.6\%}$
	500	7.58E-06	-0.0%	+0.0%	+0.8%	-0.0%	+0.8%	+8.0%	+8.7%
	500	7.30E-00	+0.0%	+0.0%	-0.6%	+0.0%	-0.6%	-6.1%	-6.7%
	120	20 1.41E-01	-0.2%	-2.0%	-0.0%	+1.4%	+2.5%	+2.2%	+4.8%
			$^{+0.2\%}_{-0.1\%}$	$^{+2.1\%}_{-0.5\%}$	$^{+0.0\%}_{-0.0\%}$	$^{-1.4\%}_{+0.3\%}$	$^{-2.5\%}_{+0.6\%}$	$^{-2.2\%}_{+0.3\%}$	$^{-4.7\%}_{+0.9\%}$
TT , 337337	150	6.96E-01		$\pm 8:5\%$					
$H \rightarrow WW$	200	7.41E-01	$\pm 8:3\%$		±8:8%	∓8:3%	∓8:8%	∓8:3%	∓8:8%
	500		$^{-0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{+0.1\%}$	$-0.0\%\ -0.0\%$	$^{-0.0\%}_{+0.1\%}$	$^{-0.0\%}_{+2.3\%}$	$^{-0.0\%}_{+2.4\%}$
	500	5.46E-01	+0.0%	+0.0%	-0.0%	+0.0%	-0.1%	-1.1%	-1.1%
$\mathrm{H} \to \mathrm{ZZ}$	120	1.59E-02	-0.2%	-2.0%	-0.0%	+1.4%	+2.5%	+2.2%	+4.8%
	120	1.002 02	+0.2%	+2.1%	+0.0%	-1.4%	-2.5%	-2.2%	-4.7%
	150	8.25E-02	-0.1%	-0.5%	+0.0%	+0.3%	+0.6%	+0.3%	+0.9%
	200	2.55E-01	$\pm 8:1\%$	$\pm 8:8\%$	<i>‡8:8%</i>	$\mp 8:3\%$	$\mp 8:8\%$	7 8:3%	$\mp 8:8\%$
			$^{+0.0\%}_{+0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{-0.0\%}_{+0.0\%}$	$-0.0\%\ -0.0\%$	$^{-0.0\%}_{+0.1\%}$	$^{-0.0\%}_{+2.3\%}$	$^{-0.0\%}_{+2.3\%}$
	500	2.61E-01	+0.0% -0.0%	-0.0% +0.0%	+0.0% +0.0%	-0.0% +0.0%	+0.1% -0.0%	$^{+2.3\%}_{-1.1\%}$	$^{+2.3\%}_{-1.1\%}$
			0.070	10.070	10.070	10.070	0.070	1.1/0	±•±/0

Julius-Maximilians-

UNIVERSITÄT WÜRZBURG