Jet veto resummation

Giulia Zanderighi
University of Oxford \& STFC

```
Work in preparation with A. Banfi and G. Salam based on
JHEP 020 I (2002) 0 I 8, Phys. Lett. B584 (2004) 298 and JHEP 0503 (2005) 073
```

The Zurich Phenomenology workshop: Higgs search confronts theory Zurich, 9-1 ${ }^{\text {th }}$ January 2012

Jet veto in Higgs searches

Kinematical cuts are needed to enhance the signal (Higgs) to background (top, WW, Z+jets, WW/ZZ/Z $\gamma, W+j e t s$, single top...) ratio
For instance, in $\left.\left.\mathrm{H} \rightarrow \mathrm{WW} \rightarrow\right|^{+}\right|^{-} \nu v$, most widely used cuts are on: $\phi_{\| \text {, }}$ $\mathrm{m}_{\|}$, MET, Pt,lhard, Pt,lsoft ... and Pt,jet
Most of these observables have constant K-factors, they barely affect the scale variation of the cross-section

Anastasiou et al. '09
This is in sharp contrast with the jet-veto, which is divergent for pt,veto $\rightarrow 0$

Jet veto in Higgs searches

On the other hand, a jet veto essential to suppress large top background, experimental studies use pt t,eto $^{\approx 20-30 \mathrm{GeV}}$

Higgs production sensitivity can be maximized by studying the 0 -, I-,2-jet bin cross-section separately, but this separation must be robust

Jet veto in Higgs searches

Breakout of the inclusive cross-section: example Tevatron with $\mathrm{m}_{H}=160 \mathrm{GeV}, M_{H} / 2<\mu_{R}=\mu_{F}<2 \mathrm{M}_{H}$

$$
\begin{gathered}
\frac{\Delta \sigma_{\text {tot }}}{\sigma_{\text {tot }}}=66.5 \%_{-9 \%}^{+5 \%}+28.6 \%_{-22 \%}^{+24 \%}+4.9 \%_{-41 \%}^{+78 \%}=[-14.3 \% ;+14.0 \%] \\
0 \text {-jet } \quad \text { I-jet } \quad \geq 2 \text {-jets }
\end{gathered}
$$

Update including NLO calculation of the 2-jet bin

$$
\begin{gathered}
\frac{\Delta \sigma_{\text {tot }}}{\sigma_{\text {tot }}}=60 \%_{-9 \%}^{+5 \%}+29 \%_{-23 \%}^{+24 \%}+11 \%_{-31 \%}^{+35 \%}=[-15.5 \% ;+13.8 \%] \\
0-\text { jet } \quad \text { I-jet } \geq 2 \text {-jets }
\end{gathered}
$$

Events migrating to different jet-bins have a large impact on experimental analysis. Accurate predictions for jet-veto important.

Uncertainty on jet veto

Stewart and Tackman 'II

- with $\mathrm{PT}^{\text {veto }}$ much smaller error
- large positive correction (K-fact) and large negative logarithms

$$
-\frac{2 C_{A} \alpha_{s}}{\pi} \ln ^{2} \frac{M_{H}}{\mathrm{p}_{\mathrm{T}}^{\text {veto }}}
$$

Uncertainty on jet veto

- with $\mathrm{PT}^{\text {veto }}$ much smaller error
- large positive correction (K-fact) and large negative logarithms

$$
-\frac{2 C_{A} \alpha_{s}}{\pi} \ln ^{2} \frac{M_{H}}{\mathrm{p}_{\mathrm{T}}^{\text {veto }}}
$$

- with full correlations between jet bins
large K large logarithms
$\sigma_{0 \text { jets }}=\sigma_{\text {tot }}-\sigma \geq 1$ jet
$\Delta^{2} \sigma_{0}$ jets $=\Delta^{2} \sigma_{\text {tot }}+\Delta^{2} \sigma \geq 1$ jet

Uncertainty on jet veto

- with $\mathrm{pT}^{\text {veto }}$ much smaller error
- large positive correction (K-fact) and large negative logarithms

$$
-\frac{2 C_{A} \alpha_{s}}{\pi} \ln ^{2} \frac{M_{H}}{\mathrm{p}_{\mathrm{T}}^{\text {veto }}}
$$

- with full correlations between jet bins
large K large logarithms
$\sigma_{0 \text { jets }}=\sigma_{\mathrm{tot}}-\sigma_{\geq 1 \text { jet }}$
$\Delta^{2} \sigma_{0}$ jets $=\Delta^{2} \sigma_{\text {tot }}+\Delta^{2} \sigma \geq 1$ jet

Uncertainty on jet veto

- with $\mathrm{pT}^{\text {veto }}$ much smaller error
- large positive correction (K-fact) and large negative logarithms

$$
-\frac{2 C_{A} \alpha_{s}}{\pi} \ln ^{2} \frac{M_{H}}{\mathrm{p}_{\mathrm{T}}^{\text {veto }}}
$$

- with full correlations between jet bins
large $K \quad$ large logarithms

$$
\begin{aligned}
\sigma_{0 \text { jets }} & =\sigma_{\text {tot }}-\sigma_{\geq 1 \text { jet }} \\
\Delta^{2} \sigma_{0 \text { jets }} & =\Delta^{2} \sigma_{\text {tot }}+\Delta^{2} \sigma_{\geq 1 \text { jet }}
\end{aligned}
$$

Resummation only for related quantities exist (Рт,н, beam-thrust)
Bozzi, Catani, DeFlorian,Grazzini '03
Berger, Marcantonini, Stewart, Tackmann, Waalewiịn 'II

Jet-veto predictions

Currently available predictions for Pt,veto:

- Pure NNLO calculation, OK for largish Pt,veto but divergent for small values
- MC predictions (Pythia, Herwig, MC@NLO, POWHEG ...)
- POWHEG or MC@NLO re-weighted with HqT (that includes NNLO + NNLL for Pt, H)
- Also possible: similar gymnastic using beam thrust

This work:
NLL + NNLO matched resummation for Ptiveto itself
comparison with other predictions (in progress)

Jet veto efficiency

Consider the production cross-section with a jet-veto

$$
\Sigma\left(p_{\mathrm{t}, \text { veto }}\right)=\sum_{N} \int d \Phi_{N} \frac{d \sigma_{N}}{d \Phi_{N}} \Theta\left(p_{\mathrm{t}, \text { veto }}-p_{\mathrm{t}, \max }\right)
$$

The observable considered in the following is the jet-veto efficiency

$$
\epsilon\left(p_{\mathrm{t}, \text { veto }}\right) \equiv \frac{\Sigma\left(p_{\mathrm{t}, \text { veto }}\right)}{\sigma_{\mathrm{tot}}}
$$

We denote by Σ_{i} (or σ_{i}) the contributions $\mathcal{O}\left(\alpha_{s}^{i}\right)$ relative to the Born term
It is also useful to define

$$
\bar{\Sigma}_{i}\left(p_{\mathrm{t}, \text { veto }}\right)=-\int_{p_{\mathrm{t}, \text { veto }}}^{\infty} d p_{t} \frac{d \Sigma_{i}\left(p_{t}\right)}{d p_{t}} \quad \Sigma_{i}\left(p_{\mathrm{t}, \text { veto }}\right)=\sigma_{i}+\bar{\Sigma}_{i}\left(p_{\mathrm{t}, \text { veto }}\right)
$$

Resummation for jet-veto

A. Banfi, G. Salam, GZ '03-'04

Caesar is an automated tool to perform NLL resummation for suitable observables.
It first determines if an observable $\mathrm{V}\left(\mathrm{k}_{1} \ldots \mathrm{k}_{\mathrm{n}}\right)$ is within its scope. If so, it determines numerically the input for the master resummation formula, and then evaluates it.

> The jet veto is, trivially, in the scope of Caesar

Resummation for jet-veto

Suitable observables satisfy:
I) for a single soft emission, collinear to leg ℓ, V should behave as

$$
V(\{p\}, k)=d_{\ell}\left(\frac{k_{t}^{(\ell)}}{Q}\right)^{a_{\ell}} e^{-b_{\ell} \eta^{(e)}} g_{\ell}(\phi)
$$

For the jet veto this is trivially satisfied with

$$
a_{\ell}=d_{\ell}=g_{\ell}(\phi)=1 \quad b_{\ell}=0 \quad \ell=1,2
$$

Resummation for jet-veto

Suitable observables satisfy:
I) for a single soft emission, collinear to leg $\ell \mathrm{V}$ should behave as

$$
V(\{p\}, k)=d_{\ell}\left(\frac{k_{t}^{(\ell)}}{Q}\right)^{a_{\ell}} e^{-b_{\ell} \eta^{(e)}} g_{\ell}(\phi)
$$

For the jet veto this is trivially satisfied with

$$
a_{\ell}=d_{\ell}=g_{\ell}(\phi)=1 \quad b_{\ell}=0 \quad \ell=1,2
$$

2) the observable should be continuously global. This is trivially satisfied since it is always equal to the k_{t} of the emission

Resummation for jet-veto

Suitable observables satisfy:
I) for a single soft emission, collinear to leg $\ell \mathrm{V}$ should behave as

$$
V(\{p\}, k)=d_{\ell}\left(\frac{k_{t}^{(\ell)}}{Q}\right)^{a_{\ell}} e^{-b_{\ell} \eta^{(e)}} g_{\ell}(\phi)
$$

For the jet veto this is trivially satisfied with

$$
a_{\ell}=d_{\ell}=g_{\ell}(\phi)=1 \quad b_{\ell}=0 \quad \ell=1,2
$$

2) the observable should be continuously global. This is trivially satisfied since it is always equal to the k_{t} of the emission
3) the observable should be recursively IRC safe. Physically this means that if one scales all emissions in a uniform manner, the observable also scales in the same manner. Again this property is trivially satisfied

Resummation for jet-veto

Last ingredient: compute the NLL effects due to multiple soft \& collinear emissions that are well separated in rapidity

A resummation typically requires
I. to determine how the observable depend on multiple emissions
2. to factorize this dependence (e.g. traditional methods use Mellin/ Fourier transforms)

Resummation for jet-veto

Last ingredient: compute the NLL effects due to multiple soft \& collinear emissions that are well separated in rapidity

A resummation typically requires
I. to determine how the observable depend on multiple emissions
2. to factorize this dependence (e.g. traditional methods use Mellin/ Fourier transforms)
Recall how this is done in CAESAR:

- find a simple observable V_{s} which has the same double logs as the full observables and where factorization in trivial
- compute (numerically) the multiple emission functions that encodes the NLL difference between V and V_{s}

Resummation for jet-veto

Last ingredient: compute the NLL effects due to multiple soft \& collinear emissions that are well separated in rapidity

A resummation typically requires
I. to determine how the observable depend on multiple emissions
2. to factorize this dependence (e.g. traditional methods use Mellin/ Fourier transforms)
Recall how this is done in CAESAR:

- find a simple observable V_{s} which has the same double logs as the full observables and where factorization in trivial
- compute (numerically) the multiple emission functions that encodes the NLL difference between $\mathrm{V}^{\text {and }} \mathrm{V}_{\mathrm{s}}$

Concretely

$$
V_{s}\left(\{p\}, k_{1} \ldots k_{N}\right)=\max _{i} V\left(\{p\}, k_{i}\right)
$$

A. Banfi, G. Salam, GZ '0I, '03, '04

Resummation for jet-veto

The NLL difference between V and V_{s} comes from the region where emissions are well-separated in rapidity (angular ordering)

In this limit, each emission leads to a jet, so $\mathrm{V}=\mathrm{V}_{\mathrm{s}}$
There are no multiple emission effects, meaning that the resummation for the jet veto at NLL is a pure Sudakov form factor

Resummation for jet-veto

The NLL resummed result takes the very simple form

$$
\begin{aligned}
\Sigma_{\mathrm{NLL}}\left(p_{\mathrm{t}, \text { veto }}\right)=\int d & x_{1} d x_{2} f\left(x_{1}, \mu_{F} \frac{p_{\mathrm{t}, \text { veto }}}{M}\right) f\left(x_{2}, \mu_{F} \frac{p_{\mathrm{t}, \text { veto }}}{M}\right) \\
& \cdot\left|\mathcal{M}_{B}\right|^{2} e^{-R_{B}\left(\frac{p_{t, \text { veto }}}{M}, \frac{\mu_{R}}{M}, \alpha_{s}\left(\mu_{R}\right)\right)} \delta\left(x_{1} x_{2} s-M^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& R_{Z}\left(\frac{p_{\mathrm{t}, \text { veto }}}{M_{Z}}, \frac{\mu_{R}}{M_{Z}}, \alpha_{s}\left(\mu_{R}\right)\right)=2 C_{F} \int_{p_{\text {t,veto }}^{2}}^{M_{Z}^{2}} \frac{d k_{t}^{2}}{k_{t}^{2}} \frac{\alpha_{s}^{\mathrm{CMW}}\left(k_{t}\right)}{\pi}\left(\frac{M_{Z}}{k_{t}}-\frac{3}{4}\right) \\
& R_{H}\left(\frac{p_{t, \text { veto }}}{M_{H}}, \frac{\mu_{R}}{M_{H}}, \alpha_{s}\left(\mu_{R}\right)\right)=2 C_{A} \int_{p_{\text {t,veto }}^{2}}^{M_{H}^{2}} \frac{d k_{t}^{2}}{k_{t}^{2}} \frac{\alpha_{s}^{\mathrm{CMW}}\left(k_{t}\right)}{\pi}\left(\frac{M_{H}}{k_{t}}-\frac{11 C_{A}-4 T_{R} N_{f}}{12 C_{A}}\right)
\end{aligned}
$$

This is a pure $g_{1}\left(\alpha_{s} L\right) L$ and $g_{2}\left(\alpha_{s} L\right)$ in the exponent

Matching to fixed order

In order to have a reliable prediction everywhere, one needs to match resummation to fixed order results

The matching procedure should satisfy:
I. the matched results should be correct to NLL terms in the exponent and the matched expanded results should be correct to $\alpha_{s}{ }^{n} L^{2 n-2}$
2. the expansion should agree with fixed order up to NNLO
3. at the boundary the efficiency should satisfy

$$
\epsilon\left(p_{\mathrm{t}, \text { veto }}^{\max }\right)=\left.1 \quad \frac{d \epsilon\left(p_{\mathrm{t}, \text { veto }}\right)}{d p_{\mathrm{t}, \text { veto }}}\right|_{p_{\mathrm{t}, \text { veto }}^{\max }}=0
$$

Given these conditions there is freedom in the matching prescription (that can be used as a further handle on the estimation of the accuracy, an alternative could be an independent scale variation in num. and den.)

Three matching schemes

$$
\begin{aligned}
& \Sigma_{\operatorname{logR}}\left(p_{\mathrm{t}, \text { veto }}\right)=\tilde{\Sigma}_{\mathrm{NLL}}\left(p_{\mathrm{t}, \text { veto }}\right) \exp \left[\frac{\Sigma_{1}\left(p_{\mathrm{t}, \text { veto }}\right)-\tilde{\Sigma}_{\mathrm{NLL}, 1}\left(p_{\mathrm{t}, \text { veto }}\right)}{\sigma_{0}}\right] \times \\
& \times \exp \left[\frac{\Sigma_{2}\left(p_{\mathrm{t}, \text { veto }}\right)-\tilde{\Sigma}_{\mathrm{NLL}, 2}\left(p_{\mathrm{t}, \text { veto }}\right)}{\sigma_{0}}-\frac{\left(\Sigma_{1}\left(p_{\mathrm{t}, \text { veto }}\right)\right)^{2}-\left(\tilde{\Sigma}_{\mathrm{NLL}, 1}\left(p_{\mathrm{t}, \text { veto }}\right)\right)^{2}}{2 \sigma_{0}^{2}}\right]
\end{aligned}
$$

(1) \sim resummation \times exp. of fixed order cor. (common for event shapes)
$\Sigma_{\operatorname{modR}}\left(p_{\mathrm{t}, \text { veto }}\right)=$
$\left(\frac{\tilde{\Sigma}_{\mathrm{NLL}}\left(p_{\mathrm{t}, \text { veto }}\right)}{\sigma_{0}}\right)^{Z}\left[\sigma_{0}+\Sigma_{1}\left(p_{t, \text { veto }}\right)+\Sigma_{2}\left(p_{\mathrm{t}, \text { veto }}\right)-Z\left(\tilde{\Sigma}_{\mathrm{NLL}, 1}\left(p_{t, \text { veto }}\right)+\tilde{\Sigma}_{\mathrm{NLL}, 2}\left(p_{t, \text { veto }}\right)\right)\right.$ $\left.-Z \frac{\tilde{\Sigma}_{\mathrm{NLL}, 1}\left(p_{\mathrm{t}, \text { veto }}\right)}{\sigma_{0}}\left(\Sigma_{1}\left(p_{p_{\text {t,veto }}}\right)-\frac{Z+1}{2} \tilde{\Sigma}_{\mathrm{NLL}, 1}\left(p_{t_{\text {t,veto }}}\right)\right)\right] \quad Z=\left(1-\frac{p_{t, \text { veto }}}{p_{\mathrm{t}, \text {,veto }}}\right)^{q}$
(2) ~ resummation + fixer order -expansion (common in DIS, or Pt, z)

3 ~ third scheme is analogous to the second one but one sets $\sigma_{2}=0$

Fixed order schemes

It is interesting to note that each scheme corresponds to a particular fixed order expression of the efficiency (all of which are the identical at NNLO)

$$
\begin{array}{rr}
\epsilon^{(a)} \equiv \frac{\Sigma_{0}\left(p_{\mathrm{t}, \text { veto }}\right)+\Sigma_{1}\left(p_{\mathrm{t}, \text { veto }}\right)+\Sigma_{2}\left(p_{\mathrm{t}, \text { veto }}\right)}{\sigma_{0}+\sigma_{1}+\sigma_{2}} & \begin{array}{c}
\text { keep all } \\
\text { known terms }
\end{array} \\
\epsilon^{(b)} \equiv \frac{\Sigma_{0}\left(p_{\mathrm{t}, \text { veto }}\right)+\Sigma_{1}\left(p_{\mathrm{t}, \text { veto }}\right)+\bar{\Sigma}_{2}\left(p_{\mathrm{t}, \text { veto }}\right)}{\sigma_{0}+\sigma_{1}} & \begin{array}{c}
\text { NLO expansion } \\
\text { for } 1-\epsilon
\end{array} \\
\epsilon^{(c)} \equiv 1+\frac{\bar{\Sigma}_{1}\left(p_{\mathrm{t}, \text { veto }}\right)}{\sigma_{0}}+\left(\frac{\bar{\Sigma}_{2}\left(p_{\mathrm{t}, \text { veto }}\right)}{\sigma_{0}}-\frac{\sigma_{1}}{\sigma_{0}^{2}} \Sigma_{1}\left(p_{\mathrm{t}, \text { veto }}\right)\right) & \begin{array}{c}
\text { strict } \\
\text { expansion }
\end{array}
\end{array}
$$

All these efficiencies differ by relative terms $\mathcal{O}\left(\alpha_{s}^{3}\right)$ not under control

Fixed order results

Large differences between schemes due to very large higher order corrections for Higgs production (for DY only modest differences)

Inclusive cross-sections

	LO	NLO	NNLO	c_{1}	c_{2}
Z [nb]	$22.84_{-2.40}^{+2.07}$	$28.6_{-1.2}^{+0.8}$	$28.6_{-0.4}^{+0.4}$	1.94	0.0
H [pb]	$3.94_{-0.73}^{+1.01}$	$8.53_{-1.34}^{+1.86}$	$10.5_{-1.0}^{+0.8}$	9.61	34

Matched NLL results

Full band obtained varying renormalization, factorization and resummation scales independently around $\mathrm{M}_{\boldsymbol{H}} / 2$

Matched NLL results

Comparison between the three schemes that are equivalent at NNLL

Comparison with MC

- NNLO+NLL band obtained by taking the envelope of full scale variation in scheme (a) + central scale for scheme (b) and (c)
- Good agreement with POWHEG, less so with MC@NLO
- Small uncertainties both in MC@NLO and POWHEG

HqT rescaling on PWG

Look at central choices

$$
x_{U R R}=x_{U F}=X_{\text {res }}=0.5
$$

- Powheg agrees well with HqT
- Rescaling has a tiny effect
- Sizeable difference between Pt,veto and Pt,H

$P_{t, \text { veto }}$ vs $P_{t, \text { Higgs }}$

- In the Pt region of interest HqT and Caesar have similar uncertainties
- Difference between Pt,H from HqT and Pt,veto from Caesar is $\alpha_{s}{ }^{2} L$
- R-dependence of Pt,veto result of the same order of magnitude as difference between HqT and Caesar (it is $\alpha_{s}{ }^{2}$ with a large "K-factor")

Conclusions

© a jet-veto enters all main current Higgs searches, solid theoretical predictions with reliable errors are highly desirable

- often accurate predictions for the Higgs pt_{t} distribution are used to reweight Monte Carlo predictions for the jet-veto
it is interesting that the jet-veto, that has never been resummed before, turns out to be a very simple observable
we are in the process of understanding the impact of a NLL+NNLO calculation on central value and uncertainties. Preliminary results shown here. Final results and a full interpretation in progress
natural to think also at a NNLL resummation. Unclear though how much uncertainties could be reduced (3 schemes equivalent at NNLL)

Extra Slides

Impact of rapidity cut and change of R

Convergence of fixed order schemes

NLL+NNLO for DY

Full band obtained varying renormalization, factorization and resummation scales independently around Mz/2

