Direct and indirect bounds on Higgs bosons

Georg Weiglein

DESY

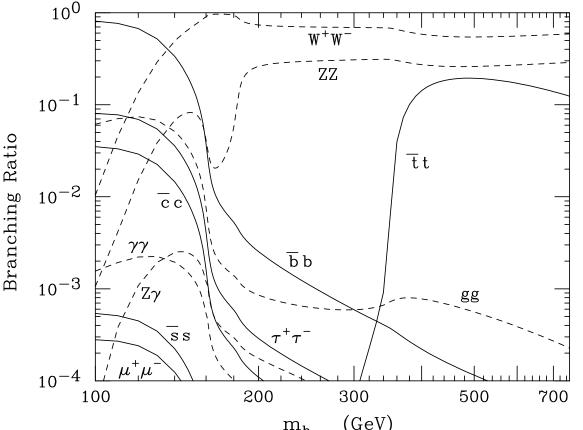
Zürich, 01 / 2012

- Introduction
- Direct bounds
- (Some) indirect bounds
- Conclusions + advertisement

Introduction:

Physics of electroweak symmetry breaking

What is the mechanism of electroweak symmetry breaking?


- Standard Model (SM), SUSY, ...:
 Higgs mechanism, elementary scalar particle(s)
- Strong electroweak symmetry breaking: a new kind of strong interaction
- Higgsless models in extra dimensions: boundary conditions for SM gauge bosons and fermions on Planck and TeV branes in higher-dimensional space

\Rightarrow New phenomena required at the TeV scale

Higgs phenomenology: SM and beyond

Standard Model: a single parameter determines the whole Higgs phenomenology: $M_{\rm H}$

Branching ratios of the SM Higgs:

⇒ dominant BRs: $M_{\rm H} \lesssim 140$ GeV: $H \rightarrow b\bar{b}$ $M_{\rm H} \gtrsim 140$ GeV: $H \rightarrow W^+W^-, ZZ$

Direct and indirect bounds on Higgs bosons, Georg Weiglein, Zurich Phenomenology Workshop: Higgs search confronts theory, Zürich, 01 / 2012 – p.3

Higgs physics beyond the SM

In the SM the same Higgs doublet is used "twice" to give masses both to up-type and down-type fermions

- ⇒ extensions of the Higgs sector having (at least) two doublets are quite "natural"
- \Rightarrow Would result in several Higgs states

Higgs physics beyond the SM

In the SM the same Higgs doublet is used "twice" to give masses both to up-type and down-type fermions

- ⇒ extensions of the Higgs sector having (at least) two doublets are quite "natural"
- \Rightarrow Would result in several Higgs states

Many extended Higgs theories have over large part of their parameter space a lightest Higgs scalar with properties very similar to those of the SM Higgs boson

Example: SUSY in the "decoupling limit"

Higgs physics beyond the SM

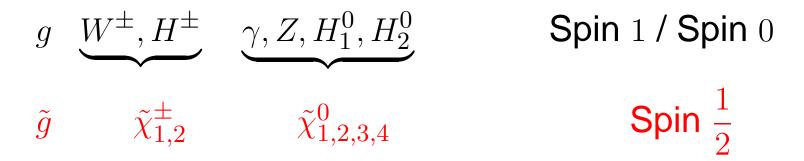
In the SM the same Higgs doublet is used "twice" to give masses both to up-type and down-type fermions

- ⇒ extensions of the Higgs sector having (at least) two doublets are quite "natural"
- \Rightarrow Would result in several Higgs states

Many extended Higgs theories have over large part of their parameter space a lightest Higgs scalar with properties very similar to those of the SM Higgs boson

Example: SUSY in the "decoupling limit"

But there is also the possibility that none of the Higgs bosons is SM-like


BSM \oplus Higgs phenomenology

- Large enhancement / suppression of standard search channels possible
 Example: large enhancement of Hb̄b coupling
 ⇒ large suppression of BR(h → γγ), BR(h → WW*), ...
- New channels, different phenomenology:
 - Experimental evidence for dark matter
 - \Rightarrow if dark matter particle is lighter than $M_{\rm H}/2$
 - \Rightarrow large branching fraction into invisible particles
 - \Rightarrow large suppression of all other BRs
 - Higgs production in decays of BSM particles
 - $h_i \rightarrow h_j h_j$ decays
 - Higgs-radion mixing, ...
 - Higgses with nearly degenerate masses: large interference effects, resonance-type behaviour possible Direct and indirect bounds on Higgs bosons, Georg Weiglein, Zurich Phenomenology Workshop: Higgs search confronts theory, Zürich, 01 / 2012 - p

The Minimal Supersymmetric Standard Model (MSSM)

Superpartners for Standard Model particles:

 $\begin{bmatrix} u, d, c, s, t, b \end{bmatrix}_{L,R} \begin{bmatrix} e, \mu, \tau \end{bmatrix}_{L,R} \begin{bmatrix} \nu_{e,\mu,\tau} \end{bmatrix}_{L} \qquad \text{Spin } \frac{1}{2}$ $\begin{bmatrix} \tilde{u}, \tilde{d}, \tilde{c}, \tilde{s}, \tilde{t}, \tilde{b} \end{bmatrix}_{L,R} \begin{bmatrix} \tilde{e}, \tilde{\mu}, \tilde{\tau} \end{bmatrix}_{L,R} \begin{bmatrix} \tilde{\nu}_{e,\mu,\tau} \end{bmatrix}_{L} \qquad \text{Spin } 0$

Two Higgs doublets, physical states: h^0, H^0, A^0, H^{\pm}

General parametrisation of possible SUSY-breaking terms \Rightarrow free parameters, no prediction for SUSY mass scale

Hierarchy problem \Rightarrow expect observable effects at TeV scale Direct and indirect bounds on Higgs bosons, Georg Weiglein, Zurich Phenomenology Workshop: Higgs search confronts theory, Zürich, 01/2012 – p.6

Simplest ansatz for SUSY breaking: the Constrained MSSM (CMSSM)

Assume universality at high energy scale ($M_{GUT}, M_{Pl}, ...$) renormalisation group running down to weak scale require correct value of M_Z

 \Rightarrow CMSSM characterised by

$$m_0^2, m_{1/2}, A_0, \tan\beta, \, \mathrm{sign}\,\mu$$

CMSSM has been the "favourite toy" for both theorists and experimentalists so far

CMSSM is in agreement with the experimental constraints from electroweak precision observables (EWPO) + flavour physics + cold dark matter density + ...

Universality of soft SUSY-breaking contributions to the Higgs scalar masses is less motivated than universality between squarks and sleptons

 \Rightarrow NUHM:

two additional parameters (can be traded for $M_{\rm A}$ and μ after imposing the electroweak vacuum conditions)

Simplest realisation:

$$m_{H_1}^2 = m_{H_2}^2 \equiv m_H^2$$

Common soft SUSY-breaking contribution to Higgs scalar masses squared: "NUHM1"

Higgs physics in Supersymmetry

"Simplest" extension of the minimal Higgs sector:

Minimal Supersymmetric Standard Model (MSSM)

- Two doublets to give masses to up-type and down-type fermions (extra symmetry forbids to use same doublet)
- SUSY imposes relations between the parameters

Higgs physics in Supersymmetry

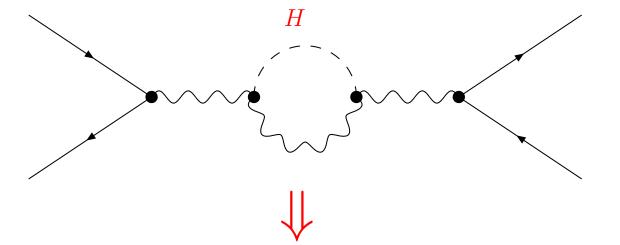
"Simplest" extension of the minimal Higgs sector:

Minimal Supersymmetric Standard Model (MSSM)

- Two doublets to give masses to up-type and down-type fermions (extra symmetry forbids to use same doublet)
- SUSY imposes relations between the parameters
- \Rightarrow Two parameters instead of one: $\tan \beta \equiv \frac{v_u}{v_d}$, M_A (or $M_{H^{\pm}}$)

⇒ Upper bound on lightest Higgs mass, M_h (FeynHiggs): [S. Heinemeyer, W. Hollik, G. W. '99], [G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, G. W. '02] $M_h \lesssim 135 \,\text{GeV}$

Very rich phenomenology

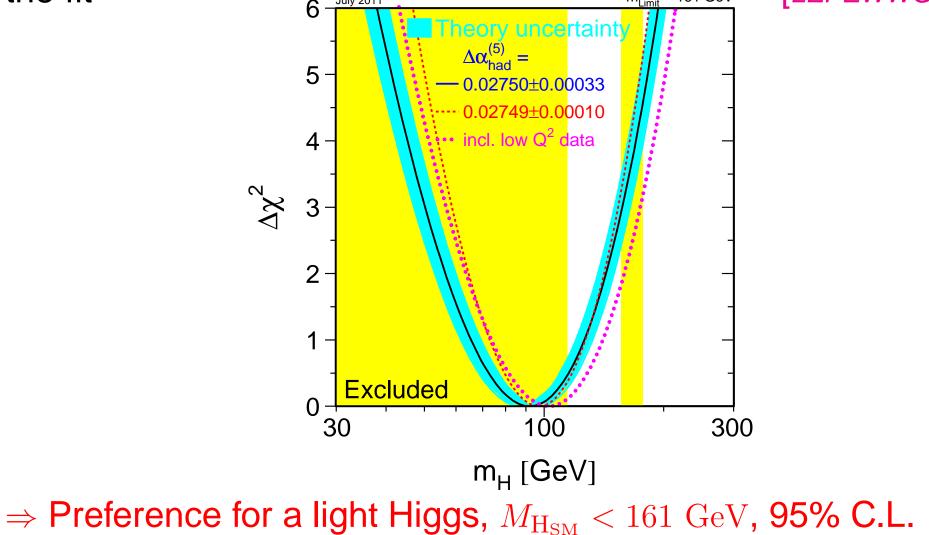

Direct and indirect bounds on Higgs bosons, Georg Weiglein, Zurich Phenomenology Workshop: Higgs search confronts theory, Zürich, 01 / 2012 – p.9

Indirect constraints

EW precision data: $M_{\rm Z}, M_{\rm W}, \sin^2 \theta_{\rm eff}^{\rm lept}, \dots$

Theory: SM, MSSM, ...

Test of theory at quantum level: loop corrections


Sensitivity to effects from unknown parameters: $M_{\rm H}$, $M_{\tilde{t}}$, ...

Window to "new physics"

Direct and indirect bounds on Higgs bosons, Georg Weiglein, Zurich Phenomenology Workshop: Higgs search confronts theory, Zürich, 01 / 2012 - p.10

Constraints on the SM Higgs from electroweak precision data

Indirect constraint on $M_{H_{SM}}$, no direct search limits included in the fit $6^{July 2011}$ $m_{Limit} = 161 \text{ GeV}$ [LEPEWWG '11]

Direct bounds

- Searches for the SM Higgs:
- Exclusion limits from LEP, Tevatron, ATLAS, CMS: Allowed mass range for SM Higgs reduced to $114 \text{ GeV} \lesssim M_{\text{H}_{\text{SM}}} \lesssim 127 \text{ GeV}$ (+ high mass region above 600 GeV)

Direct bounds

- Searches for the SM Higgs:
- Exclusion limits from LEP, Tevatron, ATLAS, CMS: Allowed mass range for SM Higgs reduced to $114 \text{ GeV} \lesssim M_{\text{H}_{\text{SM}}} \lesssim 127 \text{ GeV}$ (+ high mass region above 600 GeV)

In agreement with favoured region from electroweak precision data, compatible with SM and MSSM

Direct bounds

Searches for the SM Higgs:

Exclusion limits from LEP, Tevatron, ATLAS, CMS: Allowed mass range for SM Higgs reduced to $114 \text{ GeV} \lesssim M_{\text{H}_{\text{SM}}} \lesssim 127 \text{ GeV}$ (+ high mass region above 600 GeV)

In agreement with favoured region from electroweak precision data, compatible with SM and MSSM

Excess observed by ATLAS and CMS in SM-like Higgs searches near $M_{\rm H_{SM}} \approx 125~{\rm GeV}$, supported by several channels (in particular $\gamma\gamma$, ZZ^*)

Slight excess observed also at the Tevatron

The direct bounds quoted above apply only to a SM-like Higgs

The direct bounds will in general be drastically different for Higgs bosons of BSM scenarios

The direct bounds quoted above apply only to a SM-like Higgs

The direct bounds will in general be drastically different for Higgs bosons of BSM scenarios

⇒ There may be a Higgs signal in a mass region that is excluded for the SM:

The direct bounds quoted above apply only to a SM-like Higgs

The direct bounds will in general be drastically different for Higgs bosons of BSM scenarios

⇒ There may be a Higgs signal in a mass region that is excluded for the SM:

• Above 130 GeV

The direct bounds quoted above apply only to a SM-like Higgs

The direct bounds will in general be drastically different for Higgs bosons of BSM scenarios

- ⇒ There may be a Higgs signal in a mass region that is excluded for the SM:
 - **Above** 130 GeV
 - **Below** 114 GeV

Example: a 40 GeV Higgs in the MSSM with complex parameters (CPX scenario) is in agreement with all experimental bounds

HiggsBounds: confronting arbitrary BSM Higgs sectors

with search limits from LEP, the Tevatron and the LHC

Limits for different production and decay channels have been presented in two ways:

- For a specific model: SM, MSSM benchmark scen., ...
 - ⇒ combination of different channels possible difficult to interpret for other models or w.r.t. changes in the input parameters or the theoretical predictions
- As cross section limits for a certain search topology
 - ⇒ exclusion bounds have to be tested channel by channel fairly model-independent and generally applicable
 ⇒ Implemented in program *HiggsBounds*

[P. Bechtle, O. Brein, S. Heinemeyer, G. W., T. Stefaniak, K. Williams '08, '11]

Determination of 95% C.L. exclusion region from given cross section limits

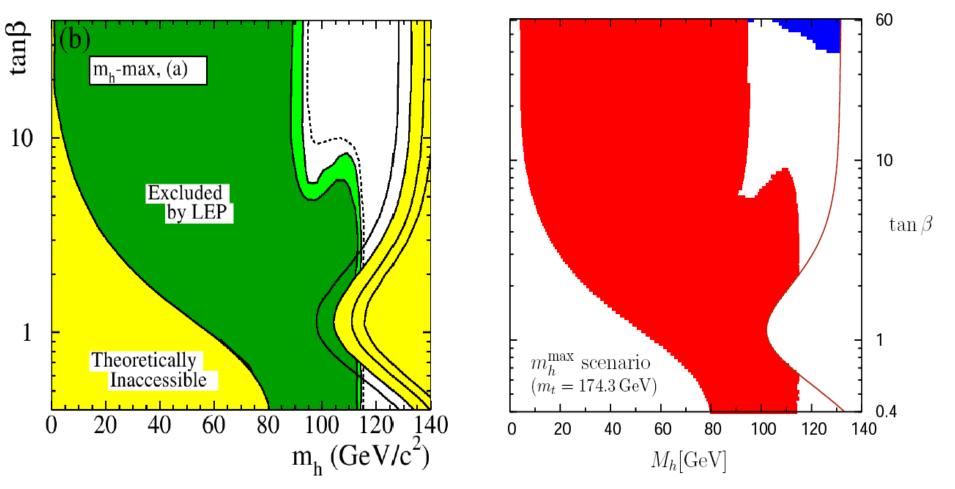
In order to obtain an exclusion limit having the correct statistical interpretation as a 95% C.L.:

Determination of 95% C.L. exclusion region from given cross section limits

In order to obtain an exclusion limit having the correct statistical interpretation as a 95% C.L.:

On the basis of the expected search limits for different channels in a given model one needs to determine for every parameter point the search channel having the highest statistical sensitivity for setting an exclusion limit

Determination of 95% C.L. exclusion region from given cross section limits

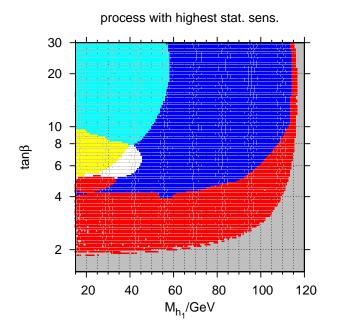

In order to obtain an exclusion limit having the correct statistical interpretation as a 95% C.L.:

- On the basis of the expected search limits for different channels in a given model one needs to determine for every parameter point the search channel having the highest statistical sensitivity for setting an exclusion limit
- For this single channel only one needs to compare the observed limit with the theory prediction for the Higgs production cross section times decay branching ratio to determine whether or not the considered parameter point of the model is excluded at 95% C.L.

Example: MSSM $m_{\rm h}^{\rm max}$ benchmark scenario, comparison of

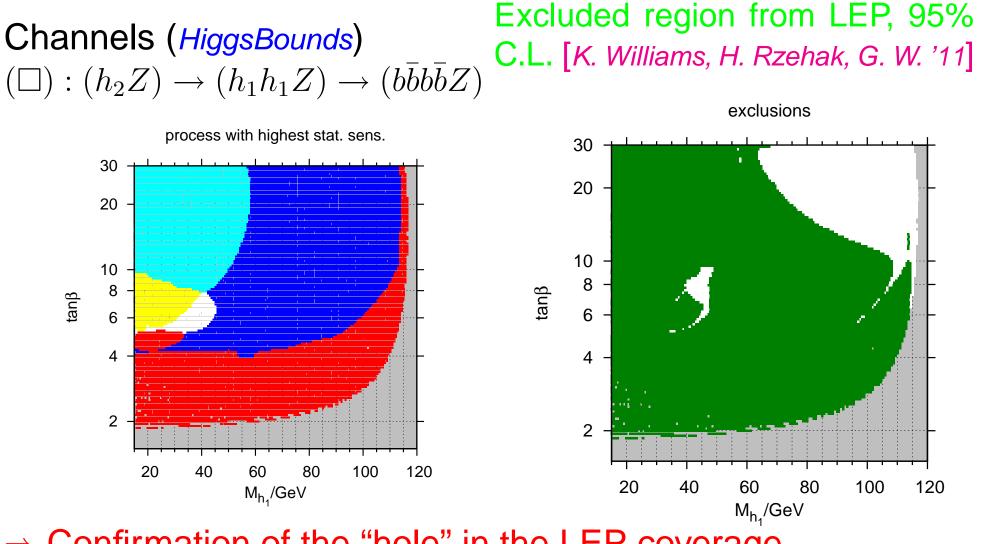
HiggsBounds output with LEP Higgs Working Group results

Eur. Phys. J. **C 47** (2006) 547 [*LEP Higgs Working Group '06*] *HiggsBounds*: m_t set to benchmark value, improved m_h prediction, Tevatron res. included



Direct and indirect bounds on Higgs bosons, Georg Weiglein, Zurich Phenomenology Workshop: Higgs search confronts theory, Zürich, 01 / 2012 – p.16

Example: analysis of LEP coverage in CPX scenario with improved theoretical prediction


For every parameter point: determine the search channel with the highest statistical sensitivity for setting an exclusion

[P. Bechtle, O. Brein, S. Heinemeyer, G. W., K. Williams '08,'11]

Channels: $(\blacksquare) = (h_1 Z) \rightarrow (b\bar{b}Z)$ $(\blacksquare) = (h_2 Z) \rightarrow (b\bar{b}Z)$ $(\square) = (h_2 Z) \rightarrow (h_1 h_1 Z) \rightarrow (b\bar{b}b\bar{b}Z)$ $(\blacksquare) = (h_2 h_1) \rightarrow (b\bar{b}b\bar{b}b)$ $(\blacksquare) = (h_2 h_1) \rightarrow (h_1 h_1 h_1) \rightarrow (b\bar{b}b\bar{b}b\bar{b}b)$

Search limits for MSSM with complex parameters (CPX scenario)

⇒ Confirmation of the "hole" in the LEP coverage
 ⇒ Very light Higgs boson is not excluded

Direct and indirect bounds on Higgs bosons, Georg Weiglein, Zurich Phenomenology Workshop: Higgs search confronts theory, Zürich, 01 / 2012 – p.18

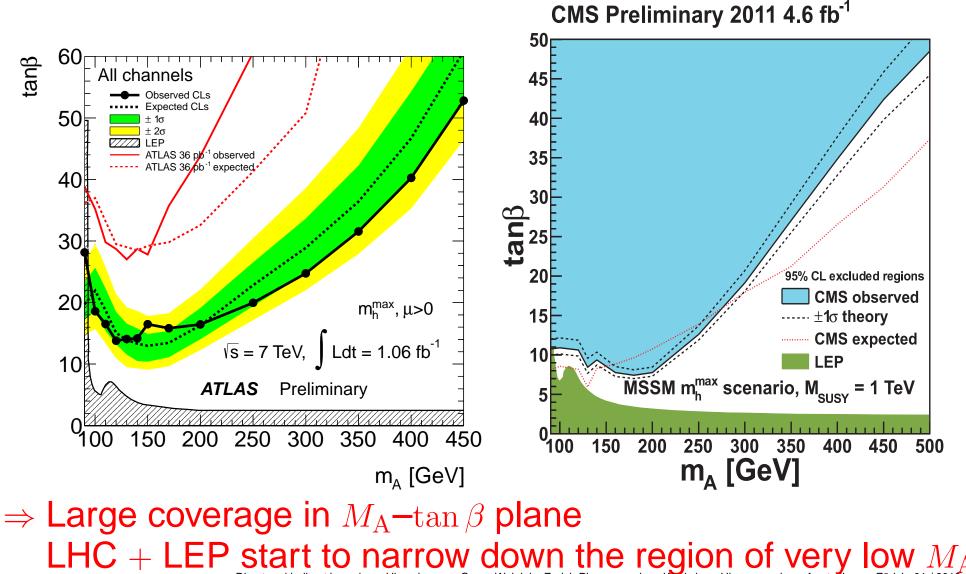
Implications of the results from the SM Higgs searches for SUSY

Implications of the results from the SM Higgs searches for SUSY

The SUSY relations imply an upper bound on the mass of the light $\mathcal{CP}\text{-}\text{even}$ Higgs, M_h

 \Rightarrow In the MSSM: $M_{\rm h} \lesssim 135 \ {
m GeV}$

Implications of the results from the SM Higgs searches for SUSY


The SUSY relations imply an upper bound on the mass of the light $\mathcal{CP}\text{-}\text{even}$ Higgs, M_h

- \Rightarrow In the MSSM: $M_{\rm h} \lesssim 135 \ {\rm GeV}$
- The detection of a SM-like Higgs with $M_{\rm H} \gtrsim 135~{
 m GeV}$ would have unambiguously ruled out the MSSM Region above the upper bound of the MSSM is meanwhile ruled out for a SM-like Higgs
- Unexcluded low-mass region corresponds to the mass range predicted for the light CP-even Higgs of the MSSM

Search for the heavy SUSY Higgs bosons H, A: limits in the M_A -tan β plane

[ATLAS Collaboration '11]

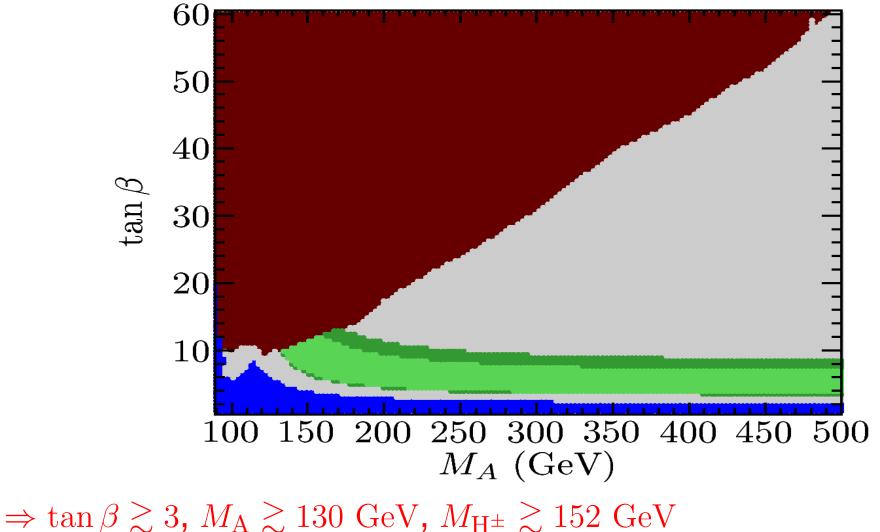
[CMS Collaboration '11]

Direct and indirect bounds on Higgs bosons, Georg Weiglein, Zurich Phenomenology Workshop: Higgs search confronts theory, Zürich, 01 / 2012 – p.20

MSSM interpretation of latest Higgs search results from ATLAS and CMS

Statistical significance of reported excess near $125 \ {\rm GeV}$ is not yet conclusive

- In the following: investigate MSSM interpretation of assumed Higgs signal at $125\pm1~{\rm GeV}$
- Intrinsic theoretical uncertainties from unknown higher-order corrections, $\Delta M_{\rm h}^{\rm intr} \sim 2 \ {\rm GeV}$, and parametric uncertaintes (variations of $m_{\rm t}$ by $\pm 1\sigma$) taken into account


in terms of the light MSSM CP-even Higgs h

Assumed signal would imply a lower bound on $M_{\rm h}$

- \Rightarrow Set parameters entering via higher-order corrections such that $M_{\rm h}$ is maximised ($m_{\rm h}^{\rm max}$ benchmark scenario)
- \Rightarrow Lower bounds on $M_{\rm A}$, $\tan \beta$
- Search limits from LEP and from LHC $H, A \rightarrow \tau^+ \tau^-$ search taken into account:
- **HiggsBounds**
- [P. Bechtle, O. Brein, S. Heinemeyer, G. W., T. Stefaniak, K. Williams '08, '11]

Lower bounds on $M_{\rm A}$ and $\tan\beta$ from assumed Higgs signal at $\sim 125~{\rm GeV}$

Green region: compatible with assumed Higgs signal with / without m_t variation [S. Heinemeyer, O. Stål, G. W. '11]

Lower bound on the lightest stop mass from assumed Higgs signal at $\sim 125~{ m GeV}$

 $M_{\rm A}$, tan β chosen in decoupling region: $M_{\rm A} = 1$ TeV, tan $\beta = 20$ [S. Heinemeyer, O. Stål, G. W. '11]

 X_t (TeV)

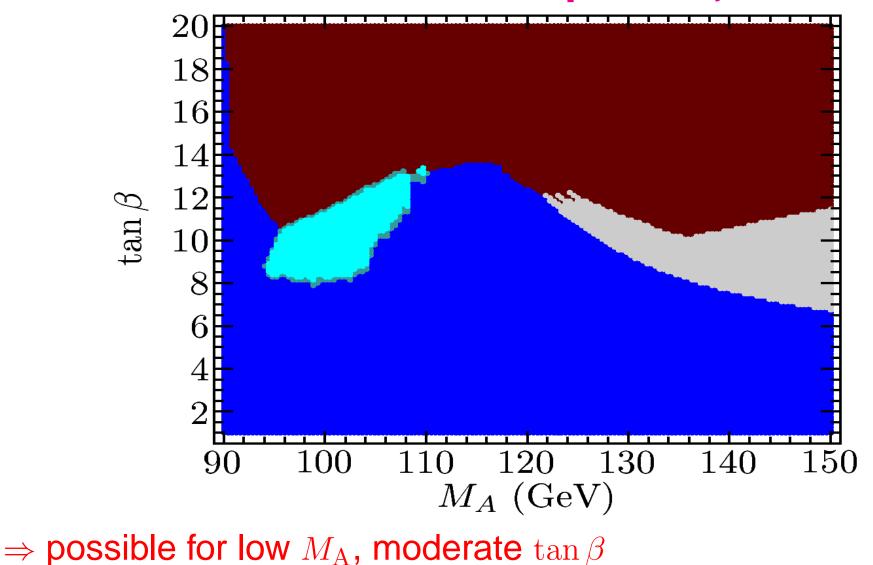
 $\mathbf{2}$

3

 $\Rightarrow m_{\tilde{t}_1} > 100 \ (250) \ GeV$ for positive (negative) X_t

-2

-3


0.2

Interpretation of an assumed Higgs signal at $\sim 125 \text{ GeV}$

in terms of the heavy MSSM CP-even Higgs H

Scan over M_A , $\tan \beta$, M_{SUSY} , X_t

[S. Heinemeyer, O. Stål, G. W. '11]

Direct and indirect bounds on Higgs bosons, Georg Weiglein, Zurich Phenomenology Workshop: Higgs search confronts theory, Zürich, 01 / 2012 – p.25

Interpretation of an assumed Higgs signal at ~ 125 GeV in

terms of the heavy MSSM CP-even Higgs H

The light Higgs *h* in this scenario has a mass that is always below the LEP limit of $M_{\rm H_{SM}} > 114.4 \,\, {\rm GeV}$ (with reduced couplings to gauge bosons, in agreement with LEP bounds)

Could have, for instance, $M_{\rm H} \sim 125 \text{ GeV}$, $M_{\rm h} \sim 98 \text{ GeV}$ (slight excess observed at LEP at $M_{\rm h} \sim 98 \text{ GeV}$)

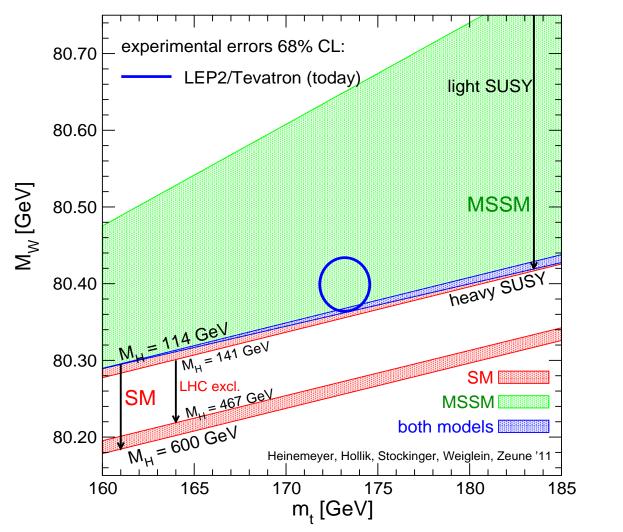
 \Rightarrow It is important to extend the LHC Higgs searches to the region below $114~{\rm GeV}!$

Interpretation of an assumed Higgs signal at ~ 125 GeV in

terms of the heavy MSSM CP-even Higgs H

The light Higgs *h* in this scenario has a mass that is always below the LEP limit of $M_{\rm H_{SM}} > 114.4 \,\, {\rm GeV}$ (with reduced couplings to gauge bosons, in agreement with LEP bounds)

Could have, for instance, $M_{\rm H} \sim 125 \text{ GeV}$, $M_{\rm h} \sim 98 \text{ GeV}$ (slight excess observed at LEP at $M_{\rm h} \sim 98 \text{ GeV}$)


 \Rightarrow It is important to extend the LHC Higgs searches to the region below $114~{\rm GeV}!$

The best way of experimentally proving that an observed state is not the SM Higgs is to find in addition (at least one) non-SM like Higgs!

(Some) indirect bounds

Prediction for M_W (parameter scan): SM vs. MSSM

[S. Heinemeyer, W. Hollik, D. Stöckinger, G. W., L. Zeune '11]

MSSM: SUSY parameters varied SM: M_H varied

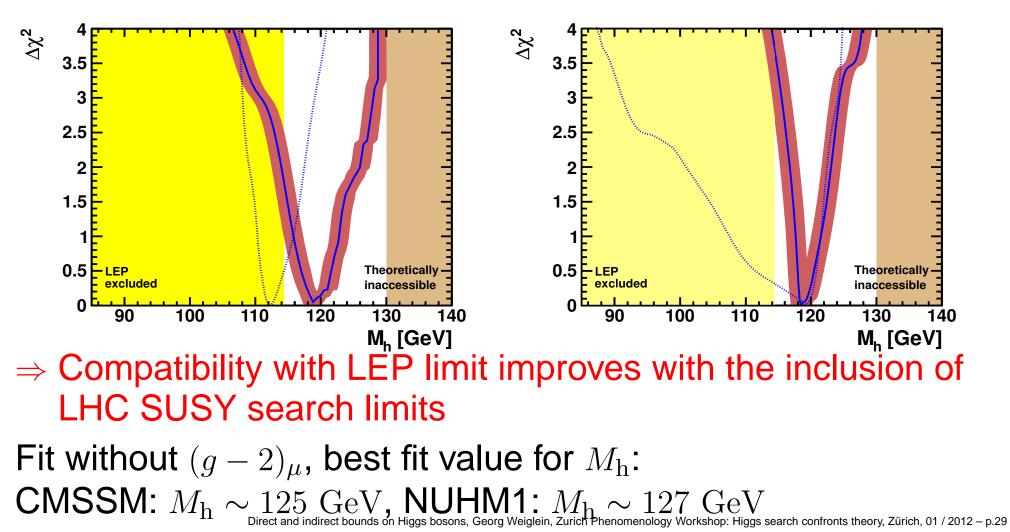
Tevatron result for m_t interpreted (perturb.) as pole mass

⇒ Slight preference for MSSM over SM

Global fits in constrained SUSY models

Take into account information from

- Electroweak precision observables: M_W , $\sin^2 \theta_{eff}$, Γ_Z , ...
- $+(g-2)_{\mu}$
- Solution + Cold dark matter (CDM) density (WMAP, ...)
- B-physics observables:

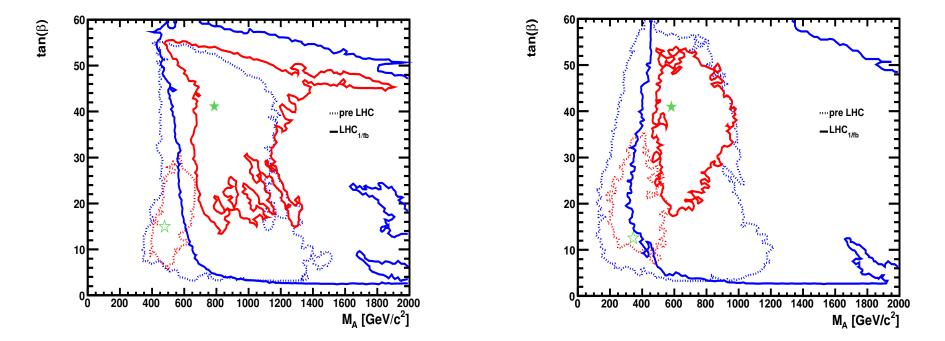

BR $(b \to s\gamma)$, BR $(B_s \to \mu^+ \mu^-)$, BR $(B \to \tau \nu)$, ...

⇒ Fits using frequentist or Bayesian statistical methods

Indirect prediction for the Higgs mass in CMSSM, NUHM1: pre-LHC vs. LHC2011

Mas TeRcope

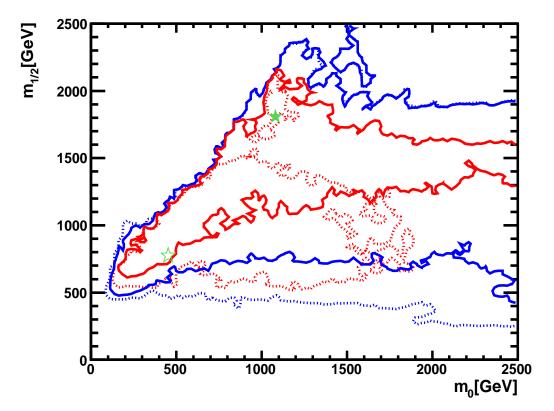
 χ^2 fit for $M_{\rm h}$, without imposing direct search limit CMSSM: NUHM1:



Indirect constraints on M_A and $\tan \beta$ in CMSSM, NUHM1: pre-LHC vs. LHC2011

[O. Buchmueller, R. Cavanaugh, A. De Roeck, M. Dolan, J. Ellis, H. Flächer, S. Heinemeyer, G. Isidori, J. Marrouche, D. Martínez Santos, K. Olive, S. Rogerson, F. Ronga, K. de Vries, G. W. '11]

CMSSM:



\Rightarrow Shift to higher values of $\tan \beta$ and M_A

Implications of an assumed Higgs signal at $\sim 125~{ m GeV}$ in the CMSSM

[O. Buchmueller, R. Cavanaugh, A. De Roeck, M. Dolan, J. Ellis, H. Flächer, S. Heinemeyer, G. Isidori, J. Marrouche, D. Martínez Santos, K. Olive, S. Rogerson, F. Ronga, K. de Vries, G. W. '11]

⇒ Shift to higher mass scales, reduced fit probability

Higgs searches have made an enormous progress with the latest results from the LHC and the Tevatron

- Higgs searches have made an enormous progress with the latest results from the LHC and the Tevatron
- The allowed range of a SM-like Higgs has been narrowed down very much.

- Higgs searches have made an enormous progress with the latest results from the LHC and the Tevatron
- The allowed range of a SM-like Higgs has been narrowed down very much. This does not apply to BSM Higgses

- Higgs searches have made an enormous progress with the latest results from the LHC and the Tevatron
- The allowed range of a SM-like Higgs has been narrowed down very much. This does not apply to BSM Higgses
- MSSM interpretation of a possible Higgs signal at 125 GeV: for M_h : lower bounds on M_A , $\tan \beta$; \tilde{t}_1 can be light

- Higgs searches have made an enormous progress with the latest results from the LHC and the Tevatron
- The allowed range of a SM-like Higgs has been narrowed down very much. This does not apply to BSM Higgses
- MSSM interpretation of a possible Higgs signal at 125 GeV: for M_h : lower bounds on M_A , $\tan \beta$; \tilde{t}_1 can be light for M_H : *h* would be very light and non-SM-like in this case

- Higgs searches have made an enormous progress with the latest results from the LHC and the Tevatron
- The allowed range of a SM-like Higgs has been narrowed down very much. This does not apply to BSM Higgses
- MSSM interpretation of a possible Higgs signal at 125 GeV: for M_h: lower bounds on M_A, tan β; t̃₁ can be light for M_H: h would be very light and non-SM-like in this case
- An excess in the search for a SM-like Higgs should serve as a strong motivation to look for non-SM-like Higgses elsewhere

- Higgs searches have made an enormous progress with the latest results from the LHC and the Tevatron
- The allowed range of a SM-like Higgs has been narrowed down very much. This does not apply to BSM Higgses
- MSSM interpretation of a possible Higgs signal at 125 GeV: for M_h: lower bounds on M_A, tan β; t̃₁ can be light for M_H: h would be very light and non-SM-like in this case
- An excess in the search for a SM-like Higgs should serve as a strong motivation to look for non-SM-like Higgses elsewhere
- Combination of direct and indirect bounds will be a powerful tool for discriminating between different interpretations and for identifying the underlying physics. Direct and indirect bounds on Higs bosons, Georg Weiglein, Zurich Phenomenology Workshop: Higgs search confronts theory, Zürich, 01/2012 –

Advertisement: Workshop "Implications of LHC results for TeV-scale physics"

Kick-off meeting: 29/08/2011–02/09/2011, CERN, $\gtrsim 200$ participants

- ⇒ Discuss impact of experimental results on future strategy for particle physics
- Results will be summarised in a document to be submitted as input for the 2012 update of the European Strategy for Particle Physics (in time for "Orsay-type" meeting of strategy update, 09/2012)

Main organisers:

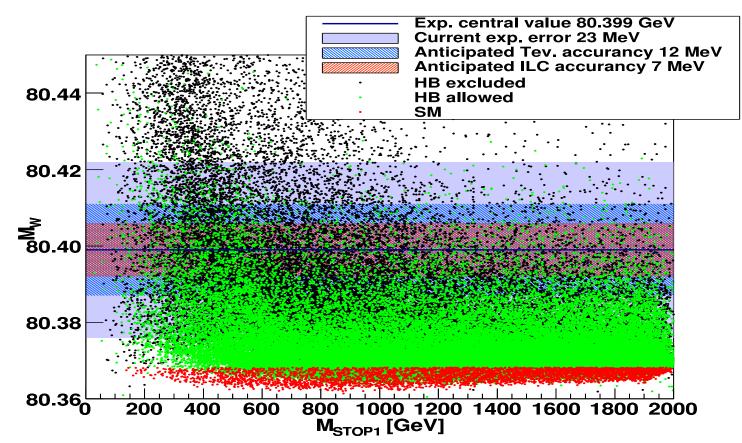
O. Buchmueller, P. De Jong, A. De Roeck, J. Ellis, C. Grojean,

S. Heinemeyer, J. Hewett, K. Jakobs, M. Mangano, F. Teubert, G. W. Direct and indirect bounds on Higgs bosons, Georg Weiglein, Zurich Phenomenology Workshop: Higgs search confronts theory, Zürich, 01/2012 – p.33

Workshop "Implications of LHC results for TeV-scale physics"

Three working groups:

- WG1: Signals of electroweak symmetry breaking
 Conv.: S. Heinemeyer, M. Kado, C. Mariotti, G. W., A. Weiler
- WG2: Signatures with missing energy
 Conv.: R. Cavanaugh, J. Hewett, S. Kraml, G. Polesello
- WG3: Other signatures of possible BSM physics
 Conv.: C. Grojean, D. Martinez, J. Santiago Perez, P. Savard, S. Worm


 \Rightarrow It is now the right time to join in to this activity!

Backup

Current experimental result for M_W and future projections

vs. predictions in the MSSM and the SM ($M_{\rm H_{SM}} \lesssim 130 {
m ~GeV}$)

[L. Zeune, G. W. '11]

\Rightarrow High sensitivity for discriminating SM / new physics

NB: The density of points has no physical significance Direct and indirect bounds on Higgs bosons, Georg Weiglein, Zurich Phenomenology Workshop: Higgs search confronts theory, Zürich, 01 / 2012 – p.36