Searches for stop squarks at the Tevatron

Fabrizio Margaroli

The Tevatron (RIP)

Fermilab's Tevatron Run II $p\overline{p}$ collider at 1.96 TeV. Almost three decades at the energy frontier

- Record instantaneous luminosity 4 ·10³² cm⁻² s⁻¹
- Record in delivered luminosity 2.5 fb⁻¹ per year
- Two multi-purpose, well-understood detectors CDF and D0

Its detectors

✓ Tracking: silicon tracker allows precision vertex detection $|\eta|$ <2 (2.5) for CDF (D0) and spectrometer up to $|\eta|$ <1.5 (3) for CDF (D0)

 Muon chamber outside calorimeter coverage |η|<1.5 (2.0) for CDF (D0) Calorimeter (EM+HAD) Shower maximum detector in EM Cal coverage: |η|<3.6 CDF |η|<4.2 D0

Jets at the Tevatron

- Use cone based jet reconstruction algorithm
 - energy resolution driven by HAD cal resolution 80%/√E_T
 - Non-instrumented regions in calorimetry+resolution effects lead to mismeasurement of jet E_T → source of apparent MET

Decay lifetime

d0 ~

Primary vertex

Prompt tracks

- Typical b-tagging id numbers at CDF/D0:
 - b-tag eff ~40%
 - fake rate~0.5% Displaced tracks

Ş≪∫

- σ(#)~ 1/10 σ(#)
- Too many final states
- D0/CDF investigated:

$$\tilde{t} \rightarrow b \tilde{\chi}^{\pm} \rightarrow b \tilde{\nu} I$$

 $\tilde{t} \rightarrow c \tilde{\chi}$
 $\tilde{t} \rightarrow b \tilde{\chi}^{\pm} \rightarrow b \tilde{\chi}^{0} I \nu$

- For stop heavier than top, the decay $t \rightarrow t\chi^0$ could be the favorite one
 - Main topic of this talk

Is it really the SM top?

Fabrizio Margaroli

Stops searches at the Tevatron

Measurements in good agreement with theory CDF's world's most precise <7% uncertainty

Most precise determinations (in leptonic channels) > theory

Fabrizio Margaroli

Stops searches at the Tevatron

Measurements in good agreement with theory CDF's world's most precise <7% uncertainty

Most precise determinations (in leptonic channels) > theory

Interestingly, one theoretician group computes a quite lower value - room for new physics?

Isidori/Kamenik PLB 700 145-149 Suggest SUSY with flavor violationg could account for the anomalous top AFB

Fabrizio Margaroli

Fabrizio Margaroli

Stops searches at the Tevatron

Fabrizio Margaroli

Stops searches at the Tevatron

0

$\tilde{t} \rightarrow t \tilde{\chi}^0$, semileptonic tops

- CDF investigated the same signature in the context of a vector-like top partner, decaying to top plus dark matter candidate.
- Kinematics basically identical to SUSY t \rightarrow t χ^0 scenario
- First signature studied: I+MET+jets+b-tag

$\tilde{t} \rightarrow t \tilde{\chi}^0$, semileptonic tops

- CDF investigated the same signature in the context of a vector-like top partner, decaying to top plus dark matter candidate.
- Kinematics basically identical to SUSY t \rightarrow t χ^0 scenario
- First signature studied: I+MET+jets+b-tag

Phys.Rev.Lett.106 191801

Need 25Xmore data O(100fb) to exclude it

$\tilde{t} \rightarrow t \tilde{\chi}^0$, all-hadronic tops

- CDF investigated the same signature in the context of a vector-like top partner, decaying to top plus dark matter candidate.
- Kinematics basically identical to SUSY t \rightarrow t χ^0 scenario
- Second signature studied: MET+many jets

Process	Events
$t\bar{t}$	1566 ± 210
W+ jets	$395,7 \pm 160.1$
Z+ jets	98.9 ± 40.0
WW/WZ/ZZ	80.0 ± 10.0
Single top	7.2 ± 1.0
Total MC	2148 ± 267
Observed	49979
$(m_{T'} = 330 GeV/c^2, m_X = 40 GeV/c^2)$	91.5 ± 12.3
$(m_{T'} = 380 GeV/c^2, m_X = 1 GeV/c^2)$	35.2 ± 4.7

- Yields after selection of $N_{jets} \ge 5$, MET>50
- QCD O(3) larger than signal
 O(4) for SUSY signal

Missing E_T, and more

Neutrinos:

measured using the missing transverse energy (MET) from calorimeter.

- Now using also the *momentum flow imbalance in the transverse plane* as measured from the *spectrometer*: the missing transverse momentum (MPT) *New!*
 - MPT largely correlated to true neutr(al)ino momentum/direction
 - For QCD events, MPT very different!

Missing E_T, and more

Neutrinos:

measured using the missing transverse energy (MET) from calorimeter.

- Now using also the *momentum flow imbalance in the transverse plane* as measured from the *spectrometer*: the missing transverse momentum (MPT) *New!*
 - MPT largely correlated to true neutr(al)ino momentum/direction
 - For QCD events, MPT very different!

Controlling backgrounds

- No ele/mu
- MET > 50 GeV
- $MET/\sqrt{\sum}Et > 3\sqrt{GeV}$
- MET not aligned to any jet
- MPT>20 GeV
- Δφ(MET, MPT)<π/2

suppress ttbar semileptonic suppress QCD, ttbar hadronic

suppress Pile-up

Fabrizio Margaroli

QCD modeling

Results

- Main difference with backgrounds is large MET/√∑Et for high M(T') and low M(X)
- Do a likelihood fit of this distribution, in absence of a signal extract 95% CL upper limits
- Analysis extends sizeably the MT,MX exclusion range.
- ≈25% better sensitivity than semileptonic

arXiv:1107.3574, accepted by PRL

Comments

- All-hadronic better than semileptonic should be even more true at the LHC
 - CMS/ATLAS better jet energy resolution, b-tagging, tau identification will allow better QCD, WZ+jets, ttbar rejection
- Contrarily to the semileptonic analysis, the all-hadronic one is not optimized for each point in the M(T) M(X) space
 - Room for improvement
- Lots of inspiration can come from the existing expertise on all-hadronic ttbar analysis
 - PRD 76 072009
 - PRD 81 052011
 - CDF Conf. Note 10433

arXiv:1107.3574, accepted by PRL

Summary

- We know very little about stops
- Stop lighter than top could still be possible
 - Complex problem, many final states
- Stop heavier than top is basically unprobed
 - It is a difficult search! Some pioneering work done at the Tevatron
- For $\tilde{t} \rightarrow t \tilde{\chi}^0$, all-hadronic final state is better than semileptonic
 - This statement will be stronger at LHC thanks to its state-of-the-art detectors

Thanks!

Ĩ→Cχ

Charm is hard to find with just vertex detectors

Typically $\tau(b \text{ hadrons}) > \tau(c \text{ hadrons})$ \Rightarrow no high-purity selection

С

 $\tilde{t} \rightarrow b\tilde{\chi}^{\pm} \rightarrow b\tilde{\nu}l$

\tilde{t} pairs in $e \ \mu \not\!\!\! E_{\mathrm{T}}$

Backgrounds are

 $p\overline{p} \rightarrow t\overline{t}$ is basically the same thing without the SUSY; it can be suppressed with MVA methods

WW likewise

Other stop searches:

• top-like *ll*

Aaltonen etal, Phys.Rev.Lett. 104,251801(2010) Abazov etal, Phys.Lett. B675,289 (2009)

top-like *l+jet* Abazov Phys.Lett.B674,4(2009)

 $\tilde{f} \rightarrow b \tilde{\chi}^{\pm} \rightarrow b \tilde{\chi}^{0} V$

Event kinematics determined by stop, chargino, & neutralino masses

- Dilepton branching ratio determined by SUSY parameters
- Reconstruct event under stop hypothesis
- Use reconstructed stop mass to discriminate stop from SM

 $\tilde{\chi}_1^0$ is the LSP, and $\tilde{q}, \tilde{\ell}, \tilde{\nu}$ are heavy

 $m_{\tilde{t}_1} \lesssim m_t$

Fabrizio Margaroli

Pair production decay signatures

Lepton+Jets

- large BR(30%)
- good S/B ratio.

Dileptonic

- Highest S/B
- lowest BR(5%)

All hadronic

- highest BR(44%)
- Very large QCD background

Tau modes 💕

- explicit tau identification

MET + jets 🚺

 Lepton+jets and dileptonic decays where electron/muon is not id'ed. Large acceptance to taus

Its collisions

