
ALICE COMPUTING
AN OVERVIEW

Federico Carminati
T1-T2 workshop

Karlsruhe, January 24, 2012

BEFORE WE START

Despite many technical difficulties, the LHC computing is a success

All experiments have been able to show very quickly results

The improvement rate in the quality of the analysis presented is
impressive

This is the first time in the HEP history that interesting results of
such quality have been shown so rapidly

This is a proof of the maturity of the simulation, reconstruction,
calibration and analysis

We must have been doing something right

And we clearly have used well the “extra time” we had

2

level 0 - special hardware8 kHz (160 GB/sec)

level 1 - embedded processors

level 2 - PCs

200 Hz (4 GB/sec)

30 Hz (2.5 GB/sec)

30 Hz

(1.25 GB/sec)

data recording &

offline analysis

Total weight! ! !10,000t
Overall diameter !16.00m
Overall length! !25m
Magnetic Field! ! 0.5Tesla

ALICE Collaboration
~ 1/2 ATLAS, CMS, ~ 2x LHCb
~1000 people, 30 countries,
~ 80 Institutes

• A full pp programme
• Data rate for pp is 100Hz@1MB

TextText

2

level 0 - special hardware8 kHz (160 GB/sec)

level 1 - embedded processors

level 2 - PCs

200 Hz (4 GB/sec)

30 Hz (2.5 GB/sec)

30 Hz

(1.25 GB/sec)

data recording &

offline analysis

Total weight! ! !10,000t
Overall diameter !16.00m
Overall length! !25m
Magnetic Field! ! 0.5Tesla

ALICE Collaboration
~ 1/2 ATLAS, CMS, ~ 2x LHCb
~1000 people, 30 countries,
~ 80 Institutes

• A full pp programme
• Data rate for pp is 100Hz@1MB

Now 4GB/s!!!

TextText

Site readiness very good

However the most common reason for job failure is indeed site misconfiguration

Apart of course from user errors

Instabilities coming from BDII are less frequent now

Good news is that availability is constantly improving

Even if the human cost can be very high

• Today	
 >140	
 sites
• ~150k	
 CPU	
 cores
• >50	
 PB	
 disk

THE MONARC MODEL

The Monarc model was designed at the end of the
last century based on a “rigid” distribution of tasks
between centres of different size and role

THE GRID – DATA TRANSFER
Data transfer has been especially successful

Out of CERN has peaked above 1GB

Transfer between centres also very good

Out of CERN• The network is probably the best surprise here

• Still the least oversubscribed resource we have

+	
 the	
 academic/research	
 networks	
 for	
 Tier1/2!

Tier	
 0	
 traffic:
>	
 4	
 GB/s	
 input

>	
 13	
 GB/s	
 served

THE GRID – RELATIONS
T1-T2-T3

T2 have been a very good surprise

More than 50% of the work in ALICE is done by T2

The Grid is becoming more and more “cloudy”

Not really clear the difference between T1s and T2s apart from data custodial and better network

but the latter is about to change - OPNng

DESTITUTION OF THE
MONARC

Given the good performance of the network and the
issues with data placement, the Monarc model is
evolving from Grid to Cloud

DESTITUTION OF THE
MONARC

Given the good performance of the network and the
issues with data placement, the Monarc model is
evolving from Grid to Cloud

T0

T1 T1 T1 T1

T2 T2 T2 T2 T2 T2 T2 T2 T2T2 T2 T2

DESTITUTION OF THE
MONARC

Given the good performance of the network and the
issues with data placement, the Monarc model is
evolving from Grid to Cloud

T0

T1 T1 T1 T1

T2 T2 T2 T2 T2 T2 T2 T2 T2T2 T2 T2

The ALICE
Grid

T1

The ALICE
Grid

T1
NorduGrid

The ALICE
Grid

T1

NIKHEF/SARA
NorduGrid

The ALICE
Grid

T1

NIKHEF/SARA
NorduGrid

RAL

The ALICE
Grid

T1

NIKHEF/SARA
NorduGrid

RAL
FZK

The ALICE
Grid

T1

NIKHEF/SARA
NorduGrid

RAL

CERN
FZK

The ALICE
Grid

T1

NIKHEF/SARA

CCIN2P3

NorduGrid

RAL

CERN
FZK

The ALICE
Grid

T1

NIKHEF/SARA

CNAF
CCIN2P3

NorduGrid

RAL

CERN
FZK

The ALICE
Grid

T1

NIKHEF/SARA

CNAF
CCIN2P3

NorduGrid

RAL

CERN

UNAM

FZK

The ALICE
Grid

T1

NIKHEF/SARA

CNAF
CCIN2P3

NorduGrid

RAL

CERN

UNAM
KISTI

FZK

The ALICE
Grid

T1

NIKHEF/SARA

CNAF
CCIN2P3

NorduGrid

RAL

CERN

UNAM
KISTI

FZK

The ALICE
Grid

????

T1

NIKHEF/SARA

CNAF
CCIN2P3

NorduGrid

RAL

CERN

UNAM
KISTI

FZK

The ALICE
Grid

????
????

THE GRID – JOB
MANAGEMENT

The priority and quota mechanism is hard to implement Grid-wide

Central queues (ATLAS, ALICE) are a single point of failure / bottleneck

Distributed queues (CMS) makes it more difficult to manage priorities

Permissions and quotas on files are also a problem

See above for central vs distributed catalogues

“Upgrading” the Grid is a very long process

CREAM

SL5

glexec

EMI / EGI may still change the pattern

11

11

SENDING JOBS TO DATA

11

SENDING JOBS TO DATA
Job 1 lfn1, lfn2, lfn3, lfn4
Job 2 lfn1, lfn2, lfn3, lfn4
Job 3 lfn1, lfn2, lfn3

Submits job User
ALICE Job Catalogue

11

SENDING JOBS TO DATA
Job 1 lfn1, lfn2, lfn3, lfn4
Job 2 lfn1, lfn2, lfn3, lfn4
Job 3 lfn1, lfn2, lfn3

Submits job User
ALICE Job Catalogue

lfn guid {se’s}
lfn guid {se’s}
lfn guid {se’s}
lfn guid {se’s}
lfn guid {se’s}

ALICE File Catalogue

11

SENDING JOBS TO DATA
Job 1 lfn1, lfn2, lfn3, lfn4
Job 2 lfn1, lfn2, lfn3, lfn4
Job 3 lfn1, lfn2, lfn3

Optimizer

Submits job User
ALICE Job Catalogue

lfn guid {se’s}
lfn guid {se’s}
lfn guid {se’s}
lfn guid {se’s}
lfn guid {se’s}

ALICE File Catalogue

11

ALICE central
services

SENDING JOBS TO DATA
Job 1 lfn1, lfn2, lfn3, lfn4
Job 2 lfn1, lfn2, lfn3, lfn4
Job 3 lfn1, lfn2, lfn3

Optimizer

Submits job User
ALICE Job Catalogue

lfn guid {se’s}
lfn guid {se’s}
lfn guid {se’s}
lfn guid {se’s}
lfn guid {se’s}

ALICE File Catalogue
Job 1.1 lfn1
Job 1.2 lfn2
Job 1.3 lfn3, lfn4
Job 2.1 lfn1, lfn3
Job 2.1 lfn2, lfn4
Job 3.1 lfn1, lfn3
Job 3.2 lfn2

11

ALICE central
services

SENDING JOBS TO DATA
Job 1 lfn1, lfn2, lfn3, lfn4
Job 2 lfn1, lfn2, lfn3, lfn4
Job 3 lfn1, lfn2, lfn3

Optimizer

Submits job User
ALICE Job Catalogue

lfn guid {se’s}
lfn guid {se’s}
lfn guid {se’s}
lfn guid {se’s}
lfn guid {se’s}

ALICE File Catalogue

Computing
Agent

Site Site

Computing
Agent

Site

Computing
Agent

Site

Computing
Agent

Job 1.1 lfn1
Job 1.2 lfn2
Job 1.3 lfn3, lfn4
Job 2.1 lfn1, lfn3
Job 2.1 lfn2, lfn4
Job 3.1 lfn1, lfn3
Job 3.2 lfn2

11

ALICE central
services

SENDING JOBS TO DATA
Job 1 lfn1, lfn2, lfn3, lfn4
Job 2 lfn1, lfn2, lfn3, lfn4
Job 3 lfn1, lfn2, lfn3

Optimizer

Submits job User
ALICE Job Catalogue

lfn guid {se’s}
lfn guid {se’s}
lfn guid {se’s}
lfn guid {se’s}
lfn guid {se’s}

ALICE File Catalogue

Computing
Agent

Site Site

Computing
Agent

Site

Computing
Agent

Site

Computing
Agent

Fetch job
Job 1.1 lfn1
Job 1.2 lfn2
Job 1.3 lfn3, lfn4
Job 2.1 lfn1, lfn3
Job 2.1 lfn2, lfn4
Job 3.1 lfn1, lfn3
Job 3.2 lfn2

11

ALICE central
services

SENDING JOBS TO DATA
Job 1 lfn1, lfn2, lfn3, lfn4
Job 2 lfn1, lfn2, lfn3, lfn4
Job 3 lfn1, lfn2, lfn3

Optimizer

Submits job User
ALICE Job Catalogue

lfn guid {se’s}
lfn guid {se’s}
lfn guid {se’s}
lfn guid {se’s}
lfn guid {se’s}

ALICE File Catalogue

Computing
Agent

Site Site

Computing
Agent

Site

Computing
Agent

Site

Computing
Agent

Send results

Job 1.1 lfn1
Job 1.2 lfn2
Job 1.3 lfn3, lfn4
Job 2.1 lfn1, lfn3
Job 2.1 lfn2, lfn4
Job 3.1 lfn1, lfn3
Job 3.2 lfn2

11

ALICE central
services

SENDING JOBS TO DATA
Job 1 lfn1, lfn2, lfn3, lfn4
Job 2 lfn1, lfn2, lfn3, lfn4
Job 3 lfn1, lfn2, lfn3

Optimizer

Submits job User
ALICE Job Catalogue

Registers
output

lfn guid {se’s}
lfn guid {se’s}
lfn guid {se’s}
lfn guid {se’s}
lfn guid {se’s}

ALICE File Catalogue

Computing
Agent

Site Site

Computing
Agent

Site

Computing
Agent

Site

Computing
Agent

Job 1.1 lfn1
Job 1.2 lfn2
Job 1.3 lfn3, lfn4
Job 2.1 lfn1, lfn3
Job 2.1 lfn2, lfn4
Job 3.1 lfn1, lfn3
Job 3.2 lfn2

DATA IS STILL THE
PROBLEM

Data placement is the main problem, particularly for analysis

“predictive” data placement for ATLAS and CMS

“opportunistic” data placement for ALICE

Data distribution “per se” works very well

With “infinite” disk
space the two would be
equivalent
“opportunistic” data
distribution depends on
a single central catalogue
It took ALICE 10 years to
get there!

ALICE FILE CATALOGUE

Application

Direct access to data
via TAliEn/TGrid interface

ALICE FILE CATALOGUE

Application

ALICE FC

File GUID, lfn or MD

Direct access to data
via TAliEn/TGrid interface

ALICE FILE CATALOGUE

Application

ALICE FC

File GUID, lfn or MD

lfn→guid→(acl, size, md5)

Direct access to data
via TAliEn/TGrid interface

ALICE FILE CATALOGUE

Application

ALICE FC

File GUID, lfn or MD

lfn→guid→(acl, size, md5)

build pfn

who has pfn?

Direct access to data
via TAliEn/TGrid interface

ALICE FILE CATALOGUE

Application

ALICE FC

File GUID, lfn or MD

lfn→guid→(acl, size, md5)

build pfn

who has pfn?SE & pfn

Direct access to data
via TAliEn/TGrid interface

ALICE FILE CATALOGUE

Application

ALICE FC

File GUID, lfn or MD
SE & pfn & envelope

lfn→guid→(acl, size, md5)

build pfn

who has pfn?SE & pfn

Direct access to data
via TAliEn/TGrid interface

ALICE FILE CATALOGUE

Application

ALICE FC

File GUID, lfn or MD
SE & pfn & envelope

lfn→guid→(acl, size, md5)

build pfn

who has pfn?SE & pfn xrootd

Direct access to data
via TAliEn/TGrid interface

ALICE FILE CATALOGUE

Application

ALICE FC

File GUID, lfn or MD
SE & pfn & envelope

lfn→guid→(acl, size, md5)

build pfn

who has pfn?SE & pfn xrootd

ev#guid Tag1, tag2, tag3…
ev#guid Tag1, tag2, tag3…
ev#guid Tag1, tag2, tag3…
ev#guid Tag1, tag2, tag3…

Tag catalogue
Direct access to data
via TAliEn/TGrid interface

COMPLETE “PULL”
MODEL?

cmsd

xrootd

Centre A

cmsd

xrootd

… any other
cmsd

xrootd

CERN

cmsd

xrootd
xrootd global redirector

But missing a
file?

Ask to the global metamgr
Get it from any other
collaborating cluster

Local clients work

With careful caching and overlapping access over the network can be slower by a
factor 2-3

xrootd offers this now

Will other products go the same way soon?

K.Bos, ATLAS

HOW TO OPTIMISE
STORAGE?

How to efficiently write N replicas of a file ?

Then, how to efficiently read the data when N
replicas are available?

In the end this is just a variation of the data locality
problem

STEP 1 – STORAGE
STATUS

To simplify the decision we first remove the problematic
storages from the options

Periodic functional tests of all known SEs (currently every 2h)

STEP 2 – DISCOVER
NETWORK TOPOLOGY

Each SE is associated a set of IP addresses (VO-Box, xrootd)

MonALISA records RTT & BW & status between all VO-Boxes

STEP 2 – DISCOVER
NETWORK TOPOLOGY

Each SE is associated a set of IP addresses (VO-Box, xrootd)

MonALISA records RTT & BW & status between all VO-Boxes

• Group
routers in AS
• Measure

RTT distance

STEP 2 – DISCOVER
NETWORK TOPOLOGY

Each SE is associated a set of IP addresses (VO-Box, xrootd)

MonALISA records RTT & BW & status between all VO-Boxes

• Group
routers in AS
• Measure

RTT distance
France

Italy

 Nordic Countries

 RussiaUSA

distance(IP, IP)

Same C-class network

Common domain name

Same AS

Same country (+ function of RTT between
the respective AS-es if known)

If distance between the AS-es is known, use it

Same continent

Far far away

distance(IP, Set<IP>): Client's public IP to all known IPs for the storage

STEP 3 – CLIENT TO
STORAGE DISTANCE

0

1

SAMPLES

Job executed at JINR

Job executed at KOLKATA

BOTTOM LINE

Flexible storage configuration to store N replicas at once

QoS tags are all that users should know about the system

Monitoring feedback on known elements and automatic
discovery and configuration of new resources

Reliable and efficient file access

Auto discovery and failover in case of temporary
problems

Use the closest working SE(s) to the application

ML repo

ML site A ML site B

SE1 SE2 SE3

Functional tests

Cache of
SE ranking

SE rank
optimiser

AliEn
catalogue

WN

Policies

BOTTOM LINE

Flexible storage configuration to store N replicas at once

QoS tags are all that users should know about the system

Monitoring feedback on known elements and automatic
discovery and configuration of new resources

Reliable and efficient file access

Auto discovery and failover in case of temporary
problems

Use the closest working SE(s) to the application

ML repo

ML site A ML site B

SE1 SE2 SE3

Functional tests

Cache of
SE ranking

SE rank
optimiser

AliEn
catalogue

WN

Policies

Sync

BOTTOM LINE

Flexible storage configuration to store N replicas at once

QoS tags are all that users should know about the system

Monitoring feedback on known elements and automatic
discovery and configuration of new resources

Reliable and efficient file access

Auto discovery and failover in case of temporary
problems

Use the closest working SE(s) to the application

ML repo

ML site A ML site B

SE1 SE2 SE3

Functional tests

Cache of
SE ranking

SE rank
optimiser

AliEn
catalogue

WN

Policies

Sync

Async

THE ALICE GRID

AliEn working prototype in 2002
Single interface to distributed computing for all ALICE physicists

File catalogue, job submission and control, software management, user analysis

~80 participating sites now
1 T0 (CERN/Switzerland)

6 T1s (France, Germany, Italy, The Netherlands, Nordic DataGrid Facility, UK)

KISTI, UNAM and India coming (!)

~73 T2s spread over 4 continents

~30,000 (out of ~150,000 WLCG) cores and 8.5 PB of disk

Resources are “pooled” together
No localisation of roles / functions

National resources must integrate seamlessly into the global grid to be accounted for

FAs contribute proportionally to the number of PhDs (M&O-A share)

T3s have the same role than T2s, even if they do not sign the MoU

http://alien.cern.ch

http://alien.cern.ch
http://alien.cern.ch

ALL IS IN MONALISA

ALL IS IN MONALISA

ALL IS IN MONALISA

ALL IS IN MONALISA

ALL IS IN MONALISA

ALL IS IN MONALISA

ALL IS IN MONALISA

GRID OPERATION
PRINCIPLE

Central AliEn services

Site VO-box
Site VO-box Site VO-box

Site VO-boxSite VO-box

WMS (gLite/ARC/OSG/Local)

SM (dCache/DPM/CASTOR/xrootd)

Monitoring, Package management

The VO-box system (very
controversial in the beginning)

 Has been extensively tested

Allows for site services scaling

Is a simple isolation layer for
the VO in case of troubles

OPERATION – CENTRAL/
SITE SUPPORT

Central services support (2 FTEs equivalent)

There are no experts which do exclusively support – there are 6
highly-qualified experts doing development/support

Site services support - handled by ‘regional experts’ (one per
country) in collaboration with local cluster administrators

Extremely important part of the system

In normal operation ~0.2FTEs/site

Regular weekly discussions and active all-activities mailing
lists

ANALYSIS

Much more successful than anticipated

At least by ALICE

We can really do analysis on the Grid

In some sense analysis is victim of its own success

In ALICE users are “abusing” the “par file” system

Local compilation of code fragments

The access to the calibration database from analysis jobs is overloading the
AliEn catalogue

In ATLAS the Data Distribution Model is running way above the design
values

Multiplication of data formats and reduction in the file size is a common curse

ANALYSIS TRAIN

AOD

TASK 1 TASK 2 TASK 3 TASK 4
ESD
Kine
Eff cor

AOD production will be organized in a ‘train’ of tasks

To maximize efficiency of full dataset processing

To optimize CPU/IO

Using the analysis framework

THE ALICE ANALYSIS
FACILITIES

Proof-enabled, Grid-
aware parallel
computing platform

Used for early discovery
physics, calibration

“Victim of its own success”
has doubled twice in the
last year at CERN, 480
cores in few days

USER ACTIVITY – MONTH ON MONTH INCREASE

Average 7100 (+27%), 280 users (+16%) 1/4 of CPU resources

Average 5000 jobs, 190 users

Average 5600 (+ 12%), 240 users (+20%)

Average 7400 (+4%), 280 users (+0%) 1/3 of CPU resources

ALIROOT

AliRoot started officially in 1999

There was never a “reset” of the code, but constant
evolution

With very heavy refactoring

One tag release per week

One full release every ~6 month

A daunting task

BUT WHAT’S NEXT?

ALIROOT OPTIMISATION

The HEP code

An embarrassing parallelism

An inextricable mix of branches / integer / float / double

A “flat” timing distribution – no “hot spots”

We always got away with clock rate, now it is not possible any more

Parallelism is there to stay

We cannot claim that we are resource-hungry and then exploit
~10%-50% of the hardware

Just think what it means in terms of money

PARALLELISM
From a

recent talk by
Intel

IF YOU TRUST INTEL

IF YOU TRUST INTEL 2

WHY IT IS SO DIFFICULT?

No clear kernel

C++ code generation / optimisation not well understood

Most of the technology is coming out now

Lack of standards

Technological risk

Non professional coders

Fast evolving code

No control on hardware acquisition

WHY IT IS SO DIFFICULT
(CONT)?

Amdhal law sets stringent limits to the results that
can be achieved

No “low level” optimisation alone will yield
results

Heterogeneous parallelism forces multi-level
parallelisation

Essentially the code (all of it!) will have to be re-
written

ALICE STRATEGY
(UNAUTHORISED)

Use the LSD-1 to essentially re-write AliRoot

Use the LSD-2 to expand the parallelism to the Grid

Hopefully the major thrust will be on MiddleWare

Refactor the code in order to expose the maximum of
parallelism present at each level

Keep the code in C++ (no CUDA, OpenCL etc.)

Explore the possible use of #pragma’s (OpenMP, OpenACC)

Experiment on all hardware at hand (OpenLab, but not only)

TIMELINE

2012 2013 2014

TIMELINE

2012 2013 2014

May 2012
Kick-off

TIMELINE

2012 2013 2014

May 2012
Kick-off

Jan2013
Work starts

TIMELINE

2012 2013 2014

May 2012
Kick-off

Jan2013
Work starts

June 2013
Mid term

review phase I

TIMELINE

2012 2013 2014

May 2012
Kick-off

Jan2013
Work starts

June 2013
Mid term

review phase I

Dec 2013
End phase I

TIMELINE

2012 2013 2014

May 2012
Kick-off

Jan2013
Work starts

June 2013
Mid term

review phase I

Dec 2013
End phase I

June 2014
Mid term

review
Phase II

TIMELINE

2012 2013 2014

May 2012
Kick-off

Jan2013
Work starts

June 2013
Mid term

review phase I

Dec 2013
End phase I

June 2014
Mid term

review
Phase II Dec 2014

End phase II

TIMELINE

2012 2013 2014

May 2012
Kick-off

Jan2013
Work starts

June 2013
Mid term

review phase I

Dec 2013
End phase I

June 2014
Mid term

review
Phase II Dec 2014

End phase II

}R&D

TIMELINE

2012 2013 2014

May 2012
Kick-off

Jan2013
Work starts

June 2013
Mid term

review phase I

Dec 2013
End phase I

June 2014
Mid term

review
Phase II Dec 2014

End phase II

}R&D }Phase I

TIMELINE

2012 2013 2014

May 2012
Kick-off

Jan2013
Work starts

June 2013
Mid term

review phase I

Dec 2013
End phase I

June 2014
Mid term

review
Phase II Dec 2014

End phase II

}R&D }Phase I }Phase II

ONE EXAMPLE –
SIMULATION

The LHC experiments use extensively G4 as main simulation
engine. They have invested in validation procedures

One of the reasons why the experiments develop their own fast MC
solution is the fact that a full simulation is too slow for several
physics analysis

We would like an architecture where fast and full MC can be run
together with the highest performance on parallel systems

To make it possible one must have a separate particle stack

However the particle stack depends strongly on the constraints of
parallelism. Multiple threads cannot update efficiently a tree data
structure.

CONVENTIONAL
TRANSPORT

At each step, the navigator *nav has the state of the
particle x,y,z,px,py,pz, the volume instance volume*,
etc.

We compute the distance to the next boundary with
something like

Dist = nav->DistoOut(volume,x,y,z,px,py,pz)

Or the distance to one physics process with, eg

Distp = nav->DistPhotoEffect(volume,x,y,z,px,py,pz)

Text

Parallelism everywhere again… but how to exploit it?

CURRENT SITUATION

We run jobs in parallel, one per core => it does not scale in case of many
cores because it requires too much memory

A multithreaded version may reduce (say by a factor 2 or 3) the amount
of required memory, but it does not fit well with a hierarchy of processors

We need data structures with internal relations only to allow parallel
execution

When looping on collections, one must avoid the navigation in large
memory areas killing the cache

We must generate vectors well matched to the degree of parallelism and
the amount of memory

We must find a system to avoid the tail effects

TAILS TAILS TAILS...
A killer if one has to wait
the end of col(i) before

processing col(i+1)
Average number

of objects in
memory

NEW TRANSPORT SCHEME

oo

o

o
o

o
o

o

o
o

oo
o

o

ooo o
oo

o

o

T1

T3

T2

o

o
o

oooo

o
o

o

o

oo
o

o

oo
o

o
oT4

All particles in the
same volume type
are transported in

parallel.
Particles entering
new volumes or

Events for which all
hits are available
are digitized in

parallel

GENERATIONS OF
BASKETS

When a particle enters a volume or is generated, it is added to the
basket of particles for the volume type.

The navigator selects the basket with the highest score (with a high
and low water mark algorithm).

At each step, the navigator *nav has the state of the particles
*x,*y,*z,*px,*py,*pz, the volume instances volume** and we
compute the distances (array *Dist) to the next boundaries e.g.

nav->DistoOut(volume,x,y,z,px,py,pz,Dist)

Or the distances to one physics process with, eg

nav->DistPhotoEffect(volume,x,y,z,px,py,pz,DispP)

A BETTER BETTER SOLUTION
checkpoint

s
At each checkpoint we
have to keep the non

finished objects/events.
We can now digitize
with parallelism on

events, clear and reuse
the slots.

Pipeline of
objects

VECTORIZING THE
GEOMETRY

Double_t TGeoPara::Safety(Double_t *point, Bool_t in) const
{
 // computes the closest distance from given point to this shape.
 Double_t saf[3];
 // distance from point to higher Z face
 saf[0] = fZ-TMath::Abs(point[2]); // Z

 Double_t yt = point[1]-fTyz*point[2];
 saf[1] = fY-TMath::Abs(yt); // Y
 // cos of angle YZ
 Double_t cty = 1.0/TMath::Sqrt(1.0+fTyz*fTyz);

 Double_t xt = point[0]-fTxz*point[2]-fTxy*yt;
 saf[2] = fX-TMath::Abs(xt); // X
 // cos of angle XZ
 Double_t ctx = 1.0/TMath::Sqrt(1.0+fTxy*fTxy+fTxz*fTxz);
 saf[2] *= ctx;
 saf[1] *= cty;
 if (in) return saf[TMath::LocMin(3,saf)];
 for (Int_t i=0; i<3; i++) saf[i]=-saf[i];
 return saf[TMath::LocMax(3,saf)];
}

Huge performance
gain expected in this
type of code where

shape constants
can be computed
outside the loop

PLAN AHEAD
(NO TIMING YET)

Continue exploring all concurrency opportunities

Develop “virtual transporter” to include a full and fast option

Introduce embryonic physics processes (em) to simulate shower
development

Evaluate the prototype on parallel architectures

Evaluate different “parallel” languages (OpenMP, CUDA,
OpenCL…)

Cooperate with experiments

For instance with ATLAS ISF (Integrated Simulation Framework)
to put together the fast and full MC.

BACK TO ALIROOT

In the MC example we see how we came to the
conclusion that a complete rewrite is necessary

Possibly a similar conclusion will apply to AliRoot,
hence the plan sketched above

This is why an year of R&D is necessary

51

