

Damping Rings

Impedance budget and effect of chamber coating on CLIC DR beam stability

E. Koukovini-Platia CERN, EPF Lausanne

Acknowledgements
G. Rumolo, K. Li, N. Mounet, B. Salvant
CERN

Overall layout 3 TeV

Damping Rings

COLLECTIVE EFFECTS STUDIED/UNDER STUDY:

Effects caused by the presence of a large number of particles in the beam leading to the creation of fields acting back on the beam

- SPACE CHARGE AND IBS
- ELECTRON CLOUD
 - BUILD UP AND BEAM STABILITY
 - BROAD BAND IMPEDANCE BUDGET
- SINGLE BUNCH INSTABILITIES ——— WAKE FIELDS/IMPEDANCE
 - HIGH FREQUENCY RESISTIVE WALL
 - BROAD BAND IMPEDANCE BUDGET
- COUPLED BUNCH INSTABILITIES
 - LOW FREQUENCY RESISTIVE WALL
 - FAST IONS INSTABILITIES
- ✓ Estimate the instabilities thresholds
- ✓ Limit the achievable beam current and the performance of the DR

Damping Rings

WAKE FIELDS/IMPEDANCE

Origin of wake fields

- √ Geometric discontinuities
- ✓ Pipe with finite conductivity
- •Act back on the beam leading to instabilities, energy loss
- •The interaction of a bunch of charged particles with the surroundings and therefore the energy loss is expressed in terms of impedance
- •Estimate the impedance of each element in the ring

$$\int_{0}^{L} F_{||}(s,z)ds = -eqW_{||}(z)$$

$$\int_0^L F_{||}(s,z)ds = -eqW_{||}(z)$$

$$Z_{||(\perp)}(\omega) \equiv \frac{1}{c} \int_{-\infty}^{\infty} dz \, e^{-i\omega z/c} W_{||(\perp)}(z)$$

Outlook

- Simulation
- Analysis results
- Summary- conclusion
- Next steps

Simulation

1. Broadband Model (DR):

- First approximation
- Used to model the whole ring
- Scan over **impedance to define an instability threshold** → Estimate the impedance budget

2. Thick wall in wigglers (Resistive wall model)

- Expected to be a strong impedance source (6.5 mm radius)
- Copper
- Stainless steel
- Effect of coating
- → Check how much is the contribution to the total impedance budget

Simulation

- Single bunch collective phenomena associated with impedances (or electron cloud) can be simulated with the HEADTAIL code
- Beam and machine parameters required in the input file
- Effect of the impedance is simulated as a single kick to the bunch at a certain point of the ring
- HEADTAIL computes the evolution of the bunch centroid as function of number of turns simulated

Methods: What to do with HEADTAIL outputs?

- Extract the position of the centroid of the bunch (vertical or horizontal) turn after turn → simulated BPM signal
- 2. Apply a classical FFT to this simulated BPM signal (x)
- 3. Apply SUSSIX* to this same simulated BPM signal (actually $x j \beta_x x'$)
- 4. Translate the tune spectrum by $Q_{x0}=0$ and normalize it to Q_s

Another visualization of the tune spectrum

The dots are brighter and bigger if the amplitude is larger

Displaying the Sussix spectrum on one line per bunch intensity

New update of the lattice design at 3 TeV

Parameters	1GHz	2GHz
Energy [GeV]	2.86	2.86
Circumference [m]	427.5	427.5
Energy loss/turn [MeV]	3.98	3.98
RF voltage [MV]	5.1	4.5
Stationary phase [°]	51	62
Natural chromaticity x/y	-115/-85	-115/-85
Momentum compaction factor	1.3e-4	1.3e-4
Damping time x/s [ms]	2/1	2/1
Number of dipoles/wigglers	100/52	100/52
Cell/dipole length [m]	2.51/0.58	2.51/0.58
Dipole/wiggler field [T]	1.0/2.5	1.0/2.5
Bend gradient [1/m ²]	-1.1	-1/1
TME phase advance x/z	0.408/0.05	0.408/0.05
Bunch population [10 ⁹]	4.1	4.1
IBS growth factor x/z/s	1.5/1.4/1.2	1.5/1.4/1.2
Hor.Ver. norm. emittance [nm.rad]	456/4.8	472/4.8
Bunch length [mm]	1.8	1.6
Longitudinal emittance [keVm]	6.0	5.3
Space charge tune shift	-0.10	-0.11

Simulation Parameters

- $<\beta_x> = 3.475 \text{ m (DR)}$
- $<\beta_{v}> = 9.233 \text{ m (DR)}$
- $<\beta_x> = 4.200 \text{ m (wigglers)}$
- $<\beta_y> = 9.839 \text{ m (wigglers)}$
- Bunch length $1\sigma = 1.8 \text{ mm}$
- $Q_x = 48.35, Q_y = 10.40,$ $Q_s = 0.0057$

from Y. Papaphilippou, F.Antoniou

Broadband model

- Model all the DR
- Round (the impedance source is assumed to be identical in the horizontal and vertical plane)
- Average beta functions used: $\langle \beta_x \rangle = 3.475 \text{ m}, \langle \beta_y \rangle = 9.233 \text{ m}$
- Scan over impedance, from 0 to 20 M Ω /m, in order to **define the instability** threshold \rightarrow estimate the impedance budget

Horizontal and vertical motion

- Centroid evolution in x and y over the number of turns, for different values of impedance
- Zero chromaticity

> As the impedance increases, an instability occurs

Mode spectrum of the horizontal and vertical coherent motion as a function of impedance

Horizontal and vertical motion

Operate with positive chromaticity

Horiz.chrom. ξ_x	0.018
Vert. chrom. ξ_y	0.019

> Instability growth in both planes

Mode spectrum of the horizontal and vertical coherent motion as a function of <u>impedance</u>

- No mode coupling observed
- Higher TMCI thresholds
- Mode 0 is damped
- Higher order modes get excited

- Presence of chromaticity makes the modes move less, no coupling
- Another type of instability occurs, called the head-tail instability
- •Instability threshold?

Broadband model

- → No TMCI instability (fast), therefore no direct observation from the mode spectrum of the impedance threshold
- → Need to calculate the rise time (=1/growth rate) of the instabilities (damping is not implemented in HEADTAIL)
- → The instability growth rate is calculated from the exponential growth of the amplitude of the bunch centroid oscillations

Rise time- x plane

- If the rise time < damping time, the instability is faster than the damping mechanism
- Damping time $\tau_x = 2$ ms

Threshold ~6.5 MΩ/m

Broadband model

Chromaticity ξ_x/ξ_y	Impedance threshold MΩ/m		
	x	у	
0/0	18	7	
0.018/ 0.019	6.5	6	
0.055/ 0.057	4	4	
0.093/ 0.096	5	3	
-0.018/ -0.019	4	5	
-0.055/ -0.057	2	2	
-0.093/ -0.096	2	2	

- Chromaticity make the modes move less, therefore it helps to avoid coupling (move to a higher threshold)
- Still some modes can get unstable due to impedance
- As the chromaticity is increased, higher order modes are excited (less effect on the bunch)
- The goal is to operate at 0 chromaticity which allows for a larger impedance budget (7 $M\Omega/m$)
- ightharpoonup But since chromaticity will be slightly positive, a lower impedance budget has to be considered, 4 MΩ/m
- \triangleright SPS, 7 km, 20 M Ω /m

Thick wall in wigglers

C = 427.5 m, L_{wigglers} = 104 m Wigglers occupy ~ ¼ of the total ring...

- Because of the small aperture of 6.5 mm compared to 9 mm of the rest of the ring, the contribution of the wigglers is expected to take a significant fraction of the available impedance budget of 4 M Ω /m.
- Moreover, layers of coating materials can significantly increase the resistive wall impedance.
 Y.Papaphilippou, 16

F.Antoniou

Beware...

From LER 2010 Workshop

- Some techniques to fight electron cloud (or have good vacuum) do not come for free and can be serious high frequency impedance sources:
 - Surface coating with low SEY materials (Cu, NEG, TiN, a-C)
 - Non-smooth surfaces (natural roughness, grooves)
 - Clearing electrodes
 - NEG coating for pumping

Clearing electrodes for DAFNE

Resistive Wall Impedance: Various options for the pipe

Vertical impedance in the wigglers (3 TeV option) for different materials

- ⇒ Coating is "transparent" up to ~10 GHz
- ⇒ But at higher frequencies some narrow peaks appear!!
- \Rightarrow So we zoom for frequencies above 10 GHz \rightarrow

Resistive Wall Impedance: Various options for the pipe

Vertical impedance in the wigglers (3 TeV option) for different materials: zoom

Layers of coating materials can significantly increase the resistive wall impedance at high frequency

- Coating especially needed in the low gap wigglers
- Low conductivity, thin layer coatings (NEG, a-C)
- Rough surfaces (not taken into account so far)

 \Rightarrow Above 10 GHz the impact of coating is quite significant.

Thick wall in wigglers

- Amorphous carbon (aC) on stainless steel (ss) (0.0005 mm/ 0.001 mm)
- Non-evaporated getter (NEG) on stainless steel (0.001 mm/ 0.002 mm)
- Amorphous carbon on copper (0.0005 mm/ 0.001 mm)
- NEG on copper (0.001 mm/ 0.002 mm)

NEG (Non Evaporated Getter)

- Important for good vacuum
- EDR
- Same conductivity as ss

Amorphous carbon (a-C)

- Important for the electron cloud
- PDR
- Scan over intensity, from 1.0 109 to 29.0 109
- \triangleright Average beta for the wigglers: $<\beta_x>$ = 4.200 m, $<\beta_y>$ = 9.839 m
- ➤ Neglect the effect of the broadband impedance (single kick due to resistive wall from the wigglers)

Example: Stainless steel (coated with NEG or a-C)

Results

Materials	TMCI thresholds
Stainless steel (ss)	21×10^9
aC on ss (0.0005 mm)	19×10^{9}
aC on ss (0.001 mm)	17×10^{9}
NEG on ss (0.001 mm)	20×10^{9}
NEG on ss (0.002 mm)	19×10^9
Copper	$> 29 \times 10^9$
aC on copper (0.0005 mm)	$> 29 \times 10^9$
aC on copper (0.001 mm)	$> 29 \times 10^9$
NEG on copper (0.001 mm)	$> 29 \times 10^9$
NEG on copper (0.002 mm)	26×10^{9}

➤ Copper is better than ss but also more expensive!
➤ Adding a layer of coating → reduces the thresholds (the thicker, the more they are reduced)

Coating doesn't have a big impact for the wigglers (still in the range of tolerance: 4.1 109 the nominal intensity)

➤ Further study...

Next steps

- Give 3 or more kicks (more realistic)
 - Coated wigglers
 - Coated rest of the machine
 - Broadband resonator
- Effect of
 - different thickness of the coating
 - different radius of the pipe
- High frequency effects of resistive wall \rightarrow calculate $\varepsilon(\omega)$, $\mu(\omega)$, $\sigma(\omega)$ for hf of the coating material \rightarrow experimental methods
- Use the multi-bunch version of HEADTAIL (impact of the resistive wall on the multi-bunch)
- Space charge study
- Do some real tune shift measurements in one of the existing rings (SLS, CesrTA)

Summary- conclusion

Appendix

- •This case (copper) is stable only for this intensity range
- •Extend the intensity [30.0-110.0]109

Azimuthal modes and impedance

Tune shift

For a Gaussian beam, we have $h_i(\omega)$ given by Eq. (6.143) and

$$\Omega^{(l)} - \omega_{\beta} - l\omega_{s} \approx -\frac{1}{4\pi} \frac{\Gamma(l + \frac{1}{2})}{2^{l} l!} \frac{N r_{0} c^{2}}{\gamma T_{0} \omega_{\beta} \sigma} i(Z_{1}^{\perp})_{\text{eff}}.$$

19.2.2 Resistive Wall Impedance

The particle beam induces an image current in the vacuum chamber wall in a thin layer with a depth equal to the skin depth. For less than perfect conductivity of the wall material, we observe resistive losses which exert a pull or decelerating field on the particles. This pull is proportional to the beam current and integrating the fields around a full circumference of the accelerator, we get for the associated longitudinal resistive wall impedance in a uniform tube of radius $r_{\rm w}$ at frequency ω_n

$$\frac{Z_{\parallel}(\omega_n)}{n}\bigg|_{\text{res}} = \frac{1-i}{n} \frac{\bar{R}}{cr_{\text{w}}} \sqrt{\frac{\mu_{\text{r}}\omega_n}{2\epsilon_0 \sigma}} = \frac{1-i}{n} \frac{\bar{R}}{r_{\text{w}}\sigma \delta_{\text{skin}}},$$
(19.40)

where the skin depth is defined by [145]

$$\delta_{\text{skin}}(\omega_n) = \sqrt{\frac{2}{\mu_0 \mu_r \omega_n \sigma}}$$
 (19.41)

The longitudinal resistive wall impedance decays with increasing frequency and therefore plays an important role only for low frequencies. The transverse resistive wall impedance for a round beam pipe is

$$Z_{\perp}(\omega_n)_{\text{res}} = \frac{2\bar{R}}{r_w^2} \left. \frac{Z_{\parallel}(\omega_n)}{n} \right|_{\text{res}}.$$
 (19.42)

Fig. 19.7. Qualitative spectra of resistive and reactive coupling impedances in a circular accelerator

Fig. 19.7 we show qualitatively these resistive as well as reactive impedance components as a function of frequency.

Fig. 19.8. Impedance spectrum of the storage ring SPEAR

Resistive wall model

$$\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial E_s}{\partial r} \right) + \lambda^2 \tilde{E}_s = 0,$$

$$\tilde{E}_r = \frac{ik}{\lambda^2} \frac{\partial \tilde{E}_s}{\partial r},$$

$$\tilde{B}_{\theta} = \left(1 + \frac{\lambda^2}{k^2} \right) \tilde{E}_r,$$
(2.5)

where we have defined a parameter

$$\lambda = \sqrt{\frac{2\pi\sigma|k|}{c}} \left[i + \operatorname{sgn}(k) \right] \tag{2.6}$$

with $\lambda^2 = 4\pi i\sigma k/c$. The sign of λ is chosen so that its imaginary part Im $\lambda > 0$. The parameter λ^{-1} has the dimensionality of length; it is related to the *skin depth* as a function of frequency $\omega = kc$ inside the metal wall:

$$\delta_{\rm skin} = \frac{1}{{\rm Im} \; \lambda} = \frac{c}{\sqrt{2\pi\sigma|\omega|}} \,. \tag{2.7}$$

Resistive wall model 2

In what follows, we will assume $|\lambda|$ is much larger than 1/b, i.e., the skin depth is much shorter than the pipe radius b. This assumption is good if wave number |k| is much greater than $c/4\pi\sigma b^2$, or equivalently, if we are interested in the region

$$|z| \ll \frac{b}{\chi},\tag{2.9}$$

where χ is a small dimensionless parameter defined by

$$\chi \equiv \frac{c}{4\pi\sigma b}.\tag{2.10}$$

For example, if b = 5 cm and the wall is made of aluminum, we have $\chi = 1.5 \times 10^{-9}$ and our approximation breaks down at a distance $\gtrsim 3 \times 10^7$ m behind the beam.

In case the vacuum chamber wall has a finite thickness t, our approximation also requires $|\lambda| \gg 1/t$. If t = 3 mm, the approximation breaks down at distance $\geq 1 \times 10^5$ m. The corresponding low-frequency field components leak through the pipe wall, leading to the Laslett analysis of tune shifts (1.30-1.31).