

KOKKINOS Charilaos TE-MSC-MDT

Technology Department

Superconducting Magnet Design and Technology (MDT)

- Superconducting magnet design and technology: from functional specification to the construction of short prototypes.
- Design study of the LHC upgrade and future projects involving superconducting magnets.
- Superconducting magnet performance analysis and feedback on the design.
- Magnetic model of the LHC, and support to beam commissioning and operation (FiDeL and WISE).
- Superconducting magnet insulation development and CERN-wide support for polymer casting and rapid prototyping.

People

- Nicholas Aquilina (doctoral student)
- Bernhard Auchmann
- Dariusz Bocian (LARP fellow)
- Per Hagen
- Nicolas Bourcey
- Sebastien Clement
- Dominique Cote
- Paolo Fessia (section leader)
- Carlos Fernandes
- Paolo Ferracin
- Remy Gauthier
 Mikko Karppinen
- Mikko Karpp
 Glyn Kirby
- Charilaos Kokkinos (fellow)
- Clement Lorin (fellow)
- Jacky Mazet
- Gregory Maury
- Attilio Milanese (fellow)
- Isabella Moser-Roth (doctoral student)
- Juan Carlos Perez
- David Smekens
- Ezio Todesco
- Dimitrios Tsirigkas (fellow)
- Qingjin Xu (project associate)

Kokkinos Charilaos

MCXB

- Dipole, Orbit Corrector
- NbTi Cable

MCXB-DL

- Quadrupole, Orbit Corrector
- NbTi Cable

<u>SMC</u>

- Racetrack Configuration, R&D
- Nb3Sn Cable

<u> 11T - SMC</u>

- Dipole, Collimator
- Nb3Sn Cable

Kokkinos Charilaos

Transition from ANSYS Classic to ANSYS Workbench Why?

- Direct use of CATIA files along with their parameters . Bi-directional linkage to ANSYS Workbench.
- The geometry used for future analysis is exact as the one used for the assembly. No simplifications due to difficulties in geometry design.
- · Fully parametric design that allows any geometry changes to be applied directly .
- More FEA friendly . Any geometry modifications needed for assigning contact regions and for better mesh control can be done anytime through the *Design Modeler* Workbench.
- Ability to control all parameters and the expected results , through the Design Exploration Table.
- Great technical model reports .
- The implementation of ANSOFT MAXWELL in ANSYS Workbench allows direct transfer of the Lorentz Forces.
- No more use of Input Files .
- Use of the latest Software improvements and their advantages.

Kokkinos Charilaos TE-MSC-MDT

The MCXB orbit correctors are used to correct the misalignment of the MQXC quadrupoles and to adjust the crossing angle and position of the two beams at the IP.

Kokkinos Charilaos

TE-MSC-MDT

Kokkinos Charilaos

TE-MSC-MDT

Kokkinos Charilaos

1. MCXB

MCXB Short Mechanical Model (150mm) collared with instrumented collars and capacitive gauges.

Kokkinos Charilaos TE-MSC-MDT

- Horizontal & vertical orbit corrector
- **Nested Coils Design** 12

Kokkinos Charilaos

TE-MSC-MDT

2. MCXB-DL

. 11T Dipol

Magnetic Flux Density

3D Magnetic Analysis

<u>Mesh</u>

10

Kokkinos Charilaos

TE-MSC-MDT

3D Structural Analysis ANS F: Structural F: Structural 1)Total Deformation Type: Total Deformation 1)Total Deformation Type: Total Deformation Unit: mm Unit: mm Time: 0,1 Time: 0,1 26/10/2011 12:49 πμ 26/10/2011 12:53 πμ 2. MCXB-DL 2,75 2,4444 2,75 2,4444 2,1389 2,1389 1,8333 1,8333 1,5278 1,5278 1,2222 1,2222 0,91667 0,91667 0,61111 0,61111 0,052537 Max 3,3006e-6 Min 0,052537 M 3,3006e-6 M 3 Load Steps : 1) Shim Pre-stress 2) Cool Down 3) Powered ANSYS 7

Kokkinos Charilaos

- The SMC (Short Model Coil) project aims at testing superconducting coils in racetrack configuration
- European collaboration between CEA (FR), CERN and STFC (UK), with the technical support from LBNL (US)
- Test bench for short racetrack coils wound with Nb₃Sn cable
- An essential step in the validation of procedures for the construction of superconducting magnets with high performance conductor
- Study of the magnetic properties degradation, by applying different level of pre-stress

Structure

3. SMC

- The structure has to allow variable lateral and longitudinal pre-stress on the coil, to allow testing different cable and insulation types and to be versatile and easy-to-assemble
- Shell-based structure using bladders and keys
- The lateral pre-stress is applied by pressurized bladders, whereas two aluminum rods provide the axial pre-stress

A KEEVSX 8/1215/h

- Batet of field ignorptectic ATIA File
- BasignetigideoigBlock Design
- By Constant Bally in the second secon
- Dareet Biologet bride \$ fide thent
- **# Bazeig/nletest: Duafficultetein**g
- Regions Process
- Analysistest Deginition

Parametric Coil Block

Meshing Process

Kokkinos Charilaos

Bpeak, coil (T)

TE-MSC-MDT

Kokkinos Charilaos

TE-MSC-MDT

3D Structural Analysis

3. SMC

Kokkinos Charilaos

Manufacturing - Assembly

3. SMC

Kokkinos Charilaos

TE-MSC-MDT

Mechanical Measurements

3. SMC

Kokkinos Charilaos

TE-MSC-MDT

Kokkinos Charilaos

Integrated Pole Design

LHC collimation upgrade foresees two additional collimators installed in the dispersion suppressor regions of points 2, 3 and 7.

MB.B11R7

missing dipole

Q11

MBA12R7 MB B1

An 11T Dipole is considered to obtain the necessary longitudinal space for the collimators

MEASE? MEBSE? Q9 MEATOR? MEBTOR? Q10

- Replacement of the 8.33 T LHC main dipoles
- Development program to demonstrate the feasibility of Nb3Sn technology for this purpose

4. 11T Dipole

C.	CERN	& FNAL	colla	boration	
----	------	--------	-------	----------	--

Removable Pole Design The goal of the second phase is the design and construction of a series of 2-m-long twin-aperture demonstrator magnets with a nominal field of 11 T at 11.85 kA current

Cable Parameters				
Cu/Non-Cu	1.1			
No of strands	40			
Cable thickness	1.307	mm		
Cable width	14.847	mm		
Cable area	19.405	mm ²		
Insulation Thickness	0.1	mm		

Kokkinos Charilaos

- Development program to demonstrate the feasibility of Nb3Sn technology for this purpose.
- SMC assembly with 11T cable to understand the behavior of Nb3Sn under different level of prestress
- Fully parametric geometry

3D Magnetic Model

3D Structural Model

Kokkinos Charilaos

Kokkinos Charilaos

THANK YOU FOR YOUR ATTENTION

