Mechanical design, analysis and integration of pre-alignment systems for CLIC

M.Anastasopoulos / BE-ABP-SU

Contents

- I. Introduction
- II. Mechanical Design Typical workflow
- III. Completed and running projects
- IV. Future tasks

I. Introduction

CLIC Pre-alignment

- Components should be pre-aligned within a few microns over 200m
- Overlapping stretched wires will provide a stable and determined alignment reference
- cWPS sensors will perform measurements with respect to these wires
- Actuators will re-adjust the components to their theoretical positions

Challenges in the Test-Modules for the mechanical engineer

- Simultaneous existence of various systems: vacuum, RF, stabilization, pre-alignment
- Limited space for installation
- Access and maintenance issues
- Proper collaboration between systems designed by different people

The metrological reference network of overlapping wires

II. Mechanical Design – Typical workflow

III. Completed and running projects

Support externities of WPS and HLS sensors for CLIC Test-Module

3D design of proposed solution

Simulation under working load for design optimization

Design, analysis & integration of additional components

Deformation under working load (static)

Stretching devices - fixed end

Stretching devices - weight end

Basic supporting system

Optical WPS with fixation

cWPS sensor with fixation

STRETCHING DEVICES - WEIGHTS ALL NON VALABLE POUR EXECUTION NOT VALID FOR EXECUTION

 $\left| \mathbf{A} \right|$

Top	plate	fabrication	drawinc
TOP	pluie	labilcation	arawing

Stretching devices assembly plan

Complete system assembly plan

Supporting block installation plan

Adaptation of Hydrostatic Leveling System (HLS) and water network for CLIC Test-Module

- Used to determine height differences
- Based on communicating vessels principle
- Air linkage between the stations for achieving the same pressure

HLS Network installation plan

□ Integration of NIKHEF RasChain system

NIKHEF optical alignment system (current design under modifications) Integration of current version of the system (Laser sensors $\boldsymbol{\delta}$ thermal insulation)

□ Integration of an alignment system in a 5 DoF Mockup

• Will provide an evaluation platform for a 5 DoF system, based on cam movers

Actual installation at 927-TAP

Metrological Reference Network (MRN) Interconnecting bench

- Limited space (~ 50 cm. width allowance inbetween the module's girders)
- Access for sensors and stretching devices maintenance
- Minimum deformation of supporting plate

IV. Future tasks

Thanks for your attention!