Update on PID studies for ITS upgrade

S.Bufalino, F.Prino
INFN-Torino
and S.Piano
INFN-Trieste

ITS CONFIGURATIONS

"Fast" tool:

ITS with 7 layers: Generated 100K events: π^+ , K^+ , p (0.040 GeV/c < mom < 2 GeV/c) with relative abundances equal 1/3 for π^+ , K^+ , p

- 7 SPD with different thickness: 10 μm, 15 μm and 18 μm
- Study of the particle separation and ITS resolution for each configuration with different number of ADC bit
- Study of efficiency and contamination for 7 silicon layers of 15 μ m using an ADC with 10 bit and three value of noise : 10 e⁻, 20 e⁻ and 40 e⁻

Reminder on some definitions

Parametrization for 7 layers

- Fit with a Gaussian function in a momentum bin for each particle type
- 2 x 3 Parameters extracted:
 - Mean value (mv) $\times \pi$, K, p
 - Gaussian Width (σ) $\times \pi$, K, p
- Calculation of BetheBloch(βγ)
 parameters by fit of mv values
- Parameterization of $\sigma_{part}(\beta \gamma)$
- Identity: the lowest $|DE/DX BetheBloch(\beta\gamma, M_{part})|/\sigma_{part}(\beta\gamma)$

Efficiency = Right MCID/Identity
Contamination =
Wrong MCID/(Right MCID+WrongMCID)

7 layer 20 μ m for comparison

Particle mix: abundances equal to 1/3 for π^+ , K^+ , p Blu 8 bit ADC Red 6 bit ADC Black 4 bit ADC

nSigma separation and resolution for 7 layers of 10 μ m

 π – K separation = (mv_{π}– mv_K)/ σ_{K}

Particle mix: Abundances equal to 1/3 for π^+ , K^+ , p Noise gaussian distributed of $20 e^-$

nSigma separation and resolution for 7 layers of 15 μ m

Particle mix: Abundances equal to 1/3 for π^+ , K^+ , p Noise gaussian distributed of $20 e^-$

nSigma separation and resolution for 7 layers of 18 µm

Particle mix: Abundances equal to 1/3 for π^+ , K^+ , p Noise gaussian distributed of 20 e

Efficiency and Contamination [15 μm, 10 bit ADC]

PROTON

15 μ m, 10 bit ADC Relative abundances=1/3 for π^+ , K^+ , p

Blue symbols: $7 \times 20 \mu m$ thick layers with 8 bit ADC

Efficiency and Contamination [15 μm, 10 bit ADC]

15 μ m, 10 bit ADC Relative abundances=1/3 for π^+ , K^+ , p

Blue symbols: $7 \times 20 \mu m$ thick layers with 8 bit ADC

Efficiency and Contamination [15 μm, 10 bit ADC]

15 μ m, 10 bit ADC Relative abundances=1/3 for π^+ , K^+ , p

Blue symbols: $7 \times 20 \mu m$ thick layers with 8 bit ADC

...to do

- Study of contamination and efficiency for the ITS configurations with 7 layers of 10 μm and 18 μm
- Generation with particle mixes taken from pp data @ 900 GeV and PbPb data @ 2.76 TeV