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Detectability of certain dark-matter candidates

Mark W. Goodman and Edward Witten
Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544
(Received 7 January 1985)

We consider the possibility that the neutral-current neutrino detector recently proposed by
Drukier and Stodolsky could be used to detect some possible candidates for the dark matter in galac-
tic halos. This may be feasible if the galactic halos are made of particles with coherent weak in-
teractions and masses 1—10% GeV; particles with spin-dependent interactions of typical weak
strength and masses 1—10* GeV; or strongly interacting particles of masses 1—10" GeV.

Dark galactic halos' may be clouds of elementary parti-
cles so weakly interacting or so few and massive that they
are not conspicuous. Many dark-matter candidates have
been proposed. Magnetic monopoles are one dark-matter
candidate accessible to experimental search,” and the same
seems to be true for axions.® On the other hand, massive
neutrinos are a popular dark-matter candidate which
seems very difficult to detect except under very favorable
conditions.* For many other dark-matter candidates con-
sidered in the literature, no practical experiments have
been proposed.

Recently, Drukier and Stodolsky proposed® a new way
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made in Ref. 5.

Let us first discuss the lower limit on detectable masses.
If a halo particle of mass m and velocity v scatters from a
target nucleus of mass M, the recoil momentum is at most
2mv and the recoil kinetic energy is at most
e=(2mv)*/2M. A reasonable value of v is v=200
km/sec. The lightest nucleus considered in Ref. 5 is
aluminum, with 4 =27 and M ~27 GeV. There seems to
be a reasonable chance of building a detector sensitive to
€ ~50—100 eV (considerably more optimistic possibilities
are discussed in Ref. 5). For €>50—100 eV, we need
m > 1—2 GeV, and this is the lower limit on the mass of
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LIMITS ON COLD DARK MATTER CANDIDATES
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An ultralow background spectrometer 1s used as a detector of cold dark matter candidates from the halo of our galaxy Using a
realistic model for the galactic halo, large regions of the mass—cross section space are excluded for important halo component
particles. In particular, a halo dominated by heavy standard Dirac neutrinos (taken as an example of particles with spin-indepen-
dent Z° exchange mteractions) with masses between 20 GeV and 1 TeV is excluded. The local density of heavy standard Dirac
neutrinos 1s <0.4 GeV/cm? for masses between 17.5 GeV and 2 5 TeV, at the 68% confidence level.
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Direct Detection

» Depends/on local WIMRIBh s_e-spac,é dens_ity

» Usual assumptlon B = @@Gev cm—3 i
\

|

. Usual assumptlon Maxwellian veIocnty dlstrlbutlon \

S —

> in galactlc rest frame

N\
— L P — —




Kinematical and chemical vertical structure of the Galactic thick disk!?
11. A lack of dark matter in the solar neighborhood

C. Moni Bidin
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Infer surface mass density
from dynamics of stellar
motions.

thick disk
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A Maximum Likelihood Analysis of Low-Energy CDMS Data

J.I. Collar and N.E. Fields?

"Enrico Fermi Institute, Kavli Institute for Cosmological Physics and
Department of Physics, University of Chicago, Chicago, IL 60637

An unbinned maximum likelihood analysis of CDMS low-energy data reveals a strong preference
(5.70 C.L.) for a model containing an exponential excess of events in the nuclear recoil band, when
compared to the null hypothesis. We comment on the possible origin of such an excess, establishing
a comparison with anomalies in other dark matter experiments. A recent annual modulation search
in CDMS data is shown to be insufficiently sensitive to test a dark matter origin for this excess.

PACS numbers: 95.35.4+d, 85.30.-z

The CDMS collaboration has recently made public a
negative search for an annual modulation in low-energy
signals from their cryogenic germanium detectors [1].
This effect is expected from Weakly Interacting Massive
Particle (WIMP) interactions with dark matter detector
targets [2]. Observation of this WIMP signature has been
claimed by the DAMA collaboration with high statisti-
cal significance [3], using low-background NalI(T1) scin-
tillators. The COGENT collaboration recently released
fifteen months of data from underground germanium de-
tector operation [4]. These display a compatible modula-
tion [4-6], albeit with the smaller statistical significance
that would be expected from a short exposure.

Fig. 6 in [1] shows, for the first time, detailed in-
formation from all eight CDMS germanium detectors
employed in the modulation search and a previous low-
energy analysis [7]. Specifically, it contains the distribu-
tion of single-interaction events in the ionization energy
(E;) vs. recoil energy (E,) plane that can be used to
identify their origin in nuclear recoils (NR) like those ex-
pected from WIMP and neutron interactions, or electron
recoils (ER) like those induced by gamma backgrounds.

A formal assessment of the possibility that a significant
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FIG. 1: Scatter plot of single-interaction events in all eight
CDMS detectors, digitized from individual plots in [1], usin,
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THE COSMIC y-RAY BACKGROUND FROM THE ANNIHILATION OF
PRIMORDIAL STABLE NEUTRAL HEAVY LEPTONS

F. W. STECKER
Laboratory for High Energy Astrophysics, NASA Goddard Space Flight Center
Received 1977 December 12; accepied 1978 February 14

ABSTRACT

In light of the recent work on the astrophysical implications of the possible existence of stable
neutral heavy leptons and the suggestion that continuing annihilation of heavy leptons produced
in the big bang might pn}dua::t a substantial cosmic y-ray background radiation, we examine
in detail the spectra and intensities of such radiation from (1) a homogeneous cosmic lepton
background, (2) a possible lepton halo around the Galaxy, and (3) integrated background radia-
tion from possible lepton halos around other galaxies and from rich galaxy clusters. In the case
of our own galactic halo, y-radiation from heavy-lepton annihilation appears to be able to ac-
count for the intensity of the observed background only if there are ~ 100 y-rays produced per
annihilation. However, in that case both the energy spectrum and isotropy would be inconsistent
with the observations. More likely lepton annihilation fluxes from a galactic halo would be
confused with cosmic-ray-produced radiation and therefore would be difficult to observe. Heavy-
lepton annihilation radiation from the halos of other galaxies accounts for at most 5 x 1077
of the background intensity, and those from rich clusters account for at most 5 x 1079 of the
background intensity. Those from a homogeneous cosmological lepton background appear to
be able to account for £10°* of the observed cosmic y-ray background, although the spectrum
and isotropy in this case would be consistent with the data.

Subject headings: cosmic rays: general — cosmology — elementary particles —
gamma rays: general




Indirect Detection
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Inirect Detection

Depends’on WIMP densityin galactic center-or other
structures. - ) ,ﬂ By ‘ |
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Fermi/GLAST Haze
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Fermi/GLAST:Line

Reg3 (JOURCE), E, =120.4 GeV
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 WIMPs: causation or coi-nci‘dence’?

e Situation how is muddled

_directhints: DAMAI 3eNT, CRESST\II
- indirect hints: PAMELA ﬁ‘nl/GLAST |
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Maverick WIMP* .+ . Social WIMP

+ WIMP is a loner. ) SMAMP part of a social network.
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Maverick WI_MPS

Dirac fermion Maverlck WIMP, y

L :{1,7 Y ,0“”}

Complex scalar Maverick WIMP, ¢
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Maverick-WIMPs
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Maverick WIMPs
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Maverick WIMPS
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WIMPs

_Collider.Searches
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Missing Momentum = Missing Mass?

:| CMS Experiment at LHC, CERN

Z| Data recorded: Tue Oct 4 02:50:32 2011 CEST
£l Run/Event: 177783 / 442962676

| Lumi section: 273

=

ak5PFJet 0, pt: 574.2 GeV

e r
. —

pfMet 0, pt: 598.3 GeV

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO11059Winter2012
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Maverick WI,I\/IPS

Colllder Searches
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Maverick-WIMPs
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x-Nucleon Cross Section (cm?)
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WIMP Questlons

* Why only one WIMP?

* If social-network of several WIMPs stronger mteractlng ones:
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— Smaller Q
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The Decade of th\e WIMP
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WIMPs -

Dark matter is a i:omplex physical phenomenon..

WIMPs are a simple, elegal
complex physical phenomenon. -~ JF&

4

“For-every comp+ex natural phenomenon there is: a"srmple, \
elegant, Compelllng wrong explanation.” | \ \ |
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