

Study of Irradiation-Induced Defects in EPI silicon PINs and LGADs by c/iDLTS

Wednesday, 12 November 2025 11:55 (20 minutes)

Low Gain Avalanche Detectors (LGADs) exhibit excellent properties, including ultra-fast time resolution and a high signal-to-noise ratio. They are widely used in high-energy physics experiments for precise particle detection and time-of-flight measurements. However, irradiation introduces deep-level defects and causes detector performance degradation. Therefore, improving the radiation hardness of LGADs is essential. In this work, capacitance-transient deep-level transient spectroscopy (c-DLTS) and current-transient deep-level transient spectroscopy (i-DLTS) were employed to investigate PINs and LGADs after various proton irradiation fluences up to $8\text{e}14 \text{ Neq/cm}^2$. The defects of LGAD was observed by c/iDLTS method which has different defects energy level compared with PIN. We will show the tested defects of PIN and LGAD after $1\text{e}13 \text{ Neq/cm}^2$ proton irradiation. And we will also show the defects of LGAD with different carbon dose after $8\text{e}14$ proton irradiation.

Type of presentation (in-person/online)

online presentation (zoom)

Type of presentation (I. scientific results or II. project proposal)

I. Presentation on scientific results

Authors: LI, Wei (Institute of High Energy Physics); Dr FAN, Yunyun (Chinese Academy of Sciences (CN))

Presenter: Dr FAN, Yunyun (Chinese Academy of Sciences (CN))

Session Classification: WG3/WP3 - Extreme fluence and radiation damage characterization