

Advanced European Infrastructures for Detectors at Accelerators

Task 8.2.1 Low energy test beam Milestone 27

AIDA 1st General Meeting, DESY 27 March 2012 Paul Soler

Motivation

 \blacksquare Recent discovery of θ_{13} , by Daya Bay with extra hints by T2K and **Double Chooz:**

$$\sin^2(2\theta_{13}) = 0.092 \pm 0.016_{stat} \pm 0.005_{syst}$$

ECAL

Double Chooz

Pi-zero Detector

Calibration glove box

Outer Veto (plastic scintillating strips)

Inner Veto (liquid scintillator, 90 m³)

390 10" PMTs of Inner Detector

Target (liquid scintillator doped with Gd, 10 m³)

Gamma catcher (liquid scintillator, 23 m³)

Buffer (mineral oil, 110 m³)

neral Mee

Motivation

- Large value of θ₁₃ improves chances of making further discoveries: mass hierarchy (is m₃>m₁,m₂ or m₃<m₁,m₂?) and CP violation (measurement CP phase δ)
- Three options: super-beam, beta beam, neutrino factory

Neutrino detectors

 Neutrino factory detectors: Magnetised Iron Neutrino Detector (MIND) with iron+scintillator and TASD

Totally
Active
Scintillation
Detector
(TASD)

AIDA General Meeting, DESY, 28 March 2012

Neutrino detectors

 Super Beam and Beta Beam detectors: water Cherenkov and/or liquid Argon (LAr) detectors
 MEMPHYS

GLACIER

Studied under LAGUNA-LBNO

Neutrino activities within AIDA WP8

Task 8.2.1:

- Develop test beam area in H8 beamline (North Area at CERN)
- A study of the upgrade of the H8 beam to deliver low energy electrons, muons and hadrons for neutrino experiment prototypes

□ Task 8.5.2:

- Build a Magnetised Iron Neutrino Detector (MIND) prototype
- Install a Totally Active Scintillating Detector prototype inside the Morpurgo magnet
- This will allow to test both electron and muon charge ID in the same test beam
- Apart from the equipment, detectors and electronics we would also need a DAQ (would the common DAQ be suitable?)
- MIND prototype becomes a facility for other users in the test beam

Milestones and deliverables

- □ Task 8.2.1: design study for low energy particle beam line
 - MS27: Specifications for beam line fixed (month 12) achieved
 - D8.3: Design study on low energy beam line: Design and implementation study on a low energy beam to the range of 1 (or possibly less) and 10 GeV (month 26)
- Task 8.5.2: TASD and MIND
 - MS28: Design of TASD and MIND (month 26)
 - MS36: Installation of TASD and MIND (month 33)
 - D8.11: Infrastructure performance and utilization TASD and MIND are constructed and tested for their performance. (Will there be test beams in 2014?)

H8 beamline

Feasibility study and cost of low energy beamline

H8 beamline specification

- Specifictions of low energy test beam area in H8:
 - Measurement of electron charge ID and stopping power in TASD:
 use Electron-Muon Ranger (EMR) in MORPURGO magnet in the

North Area at CERN (1.6 T).

- Electron beam from 0.5 5 GeV/c (up to 9 GeV/c)
- Measurement of muon charge ID in MIND with correct-sign background rejection of one part in 10⁴
- Muon beam between 0.8 5 GeV/c (perhaps up to 9 GeV/c).
- Reconstruction of the hadronic shower for CC vs NC selection: hadron beam 0.5 - 9 GeV/c
- Particle flux (muons) of 1-2 kHz for each given momentum, in spot size of 10x10 cm²

ch 0 cm² eeting,

AIDA General Meeting, DESY, 28 March 2012

East Area

Another possibility is the East Area at the CERN PS, with a fixed dipole magnet for dedicated Neutrino Detector R&D

Conclusions

- Specifications of H8 beamline for low energy applications, including neutrino R&D test beams has been carried out: milestone 27 of AIDA task 8.2.1
- Doctoral student in place to carry out design study of test beam: deliverable 8.3 in month 26.
- Instrumentation for test beam (MIND and TASD) in following talk