

Cosmic Ray Tracker and Detector Control System at the GIF++

A. Polini (INFN Bologna) on behalf of WP 8.5.3 group

Outline

- Cosmic Ray Tracker
- Infrastructure, monitoring and DCS
- Plans

Cosmic Ray Tracking Trigger for the GIF++

G. Aielli (Univ. and INFN Rome 2)

Proposal guidelines

- Amount of money limited.....
- Need for a CR tracking trigger to ensure test operation for most of the time (beam presence a few weeks/year)
- Large area desirable to fit multiple users
- Tracking performance: small dimensions tracker facing a large protected confirm plane > minimize channels
- Timing performance ~1ns to provide an easy and clean trigger setup
- High rate to be sustained ~20 kHz/cm²

The GIF++ area

Cosmics monitor Layout

Some basic schemes

- hanging tracking trigger → ~ 50 x 50 cm² four Layers X/Y readout. ~ 1 cm pitch strips →
 200 channels
- Large confirm plane under the floor → 200 x 200 cm² singlet or doublet . ~ 3 cm pitch strips → 100 channels
- Ground tracker (optional) \rightarrow 50 x50 cm² doublet X-Y. ~ 1 cm pitch strips \rightarrow 100 channels
- Readout system: Digital pattern for the big chamber. Analog readout for small trackers (time+charge) or part of them.

Trigger layout

A possible Trigger scheme

- The CR are triggered by a high performance RPC chamber which also provides a 3D track extrapolation
 - The photon background is suppressed by 2 cascaded double narrow coincidence (1 ns)
 - The first coincidence is done at the end of each couple of facing strips
 - The second coincidence is done gløbally

The trigger proposal is confirmed by a broad coincidence done with the confirm plane

Power System and DCS at the GIF++

A. Polini (INFN Bologna)

Outline

- What needs to be provided
- Manpower
- First Design Consideration
- Hardware + Software Options
- Plans

Manpower

- Groups:
 - INFN Bologna
 - · A. Polini et al.
 - NTUA group
 - E.N.Gazis, T. Alexopoulos, G.Tsipolitis,
 - + 5 students (NTUA group)
 - Techion Univ.
 - S. Tarem et. Al.

Groups with good experience in DCS

A possible System Architecture

- Use wherever possible existing knowledge and work
- One versatile standard well known in ATLAS/CMS ... LHC
- → CAEN EASY System
 - Large Systems (Detector and Environment Control)
 - Includes: setting of detector parameters monitoring of detector and environmental variables
- Windows Server/Linux + PVSS + OPC → CAEN (SY1527 Mainframe)
- Large choice of dedicated HV/LV modules
- Monitoring and Setting via CAEN ADC + DAC Modules
- New faster systems being developed

RD 51 NTU Athens System

gure 13: Selection of a specific time period plot of voltage and current during one day operation. This plot was

ure 14: Plot of the high voltage scan of a detector during a test beam. On the same Figure the instantane

high voltage, the set high voltage and the monitor of current of a channel are plotted. The voltages correspond to the left axis and the current to the right. This plot was produced with GnuPlot.

System Overview + Group Handling

RD51-NOTE-2011-011

November 18, 2011

A Slow Control System for RD51 Test Facilities

Konstantinos Karakostas^a, Theodoros Alexopoulos^a, Georgios Tsipolitis^a

aNational Technical University of Athens

External Export

Root + Gnuplot Analysis

AIDA 8.5.3 ENVIRONMENTAL SENSORS STATUS REPORT

Stefano Bianco
for the Frascati and
Napoli (S.Buontempo et al.) groups
March 16, 2012
In collaboration with Richard Fortin - PH-DT-DI CERN

OBJECTIVE

- atmospheric (p), temperature (T), relative humidity (RH) monitoring of GIF++ experimental area
- possibly include experimental gases RH monitoring
- o(10) sampling points total, in irradiated and non-irradiated areas
- Precision
 - +-0.2°C T
 - +-2% RH
- Simple, cost- and labour- effective technique
- Complying to CERN monitoring standards PVSS/DCS
- Reusing existing material if possible

BASELINE CONCEPT

- NON IRRADIATED AREAS & GAS
 - PICO (National Instr.) + PT100
 - Labview + PVSS + DCS
- •IRRADIATED AREAS
 - As above, in shielded garage, OR:
 - RadHard Optical Fiber Bragg Grating sensors
 - •CAVE: only if very expensive interrogation system is available

EXAMPLE IN OPERATION @ SGX5: SENSORS BOX OF CMS RPC GAS GAIN MONITORING SYSTEM

- n.2 PICO ADC + PT100
- 10 sampling points
- Stainless steel gas receptacles (3 gas lines) and environmental sensors
- LabView + PVSS + DCS

Present Baseline

- Possibility of integrating into CAEN EASY+PVSS system
- Many argument in favor: one argument against could be the cost
- Many components, HW and SW already available (CAN PSU, ELMB, ENV Sensors, VME crates)
- A baseline system could be:
 - 1 mainframe, 1 Power Generator 2 crates +
 HV and LV boards and on ADC A-3801 board for monitoring (128 channels)

Conclusions

- A first design of a Cosmic Ray tracking trigger is available
- Try and re-use where possible experience and equipment already known from LHC experiments
- Resources in terms of manpower and experience not problematic

Next Steps:

- Finalize tracking design
- Establish the system requirement and collecting information from different counterparts involved
- Converge towards a more concrete design
- Produce HW cost + time + work estimates