MIND Prototype Simulation Results and Observations

R. Bayes

¹School of Physics and Astronomy University of Glasgow

19 Dec., 2011

Single Particle Simulations

Started considering simulations of single particles in detector.

- Not done before because the analysis code was not compatable.
- Necessary for the assessment of the reconstruction efficiency.
 - The MIND reconstruction algorithm does not handle hadronization from neutrino interactions.
 - ➤ To understand the track reconstruction must suppress the appearance of mesons in the tracks.
- Required for the assessment of track efficiency in MIND prototype, a MIND near detector, and the full sized detector.

MIND Prototype Simulations

Use a simulation of a 1m×1m×2m detector

- Alternating 3cm iron plates and 2cm scintillating planes.
- Octagonal geometry used to avoid compatability issues.
- Support ears suppressed.
- Use idealized toroidal magnetic field, assuming 100 kA current.
- Simulation includes 7cm diameter copper STL for scattering.

Simulations with Muons

 μ^+ Simulation (10 Events)

- Simulations completed using muons and pions.
- ▶ Muons generated at random position in x y plane at z = -L/2.
 - L is detector length.
- 1 million events generated for each simulation.

MIND Prototype Efficiencies For μ^+

Only two cuts applied

- Has the track been reconstructed?
- Is the reconstructed charge correct?

Overall Efficiency

Number of successful tracks over the total number of tracks.

Charge Identification

 Number of successful tracks over the number of tracks reconstructed.

Results from MIND Far Detector

Important to put above results in context

Overall Efficiency

- Efficiency is flat throughout test range.
- Average efficiency of 81%

Charge Identification

- Efficiency peaks at low energies
- Charge identification better than 98%

Comparison of the Far Detector and Prototype

- Prototype has a lower charge identification efficiency than far detector.
 - Likely due to small proportion of bending contained in detector.
- Low momentum (better contained) tracks are more likely reconstructed
- Limited by seeding algorithm.
 - Kalman filter seeding based on track range if contained in detector, and estimated from curvature otherwise.
- Efficiency is higher at low momentum for both detectors here compared to Golden channel analysis.
 - some cuts preferentially remove low momentum and large angle tracks: e.g. Track Proportion cut.
 - All muons in this study start parallel to detector axis.
 - Should consider tracks at range of longitudinal angles.
 - Must test effect of track quality cuts on single particle samples.

μ^- Samples in Prototype MIND

Reconstruction of defocussed species must be considered

Overall Efficiency

- Efficiency 10% lower than for μ^+ .
- More track contained in detector for tracks with large E_μ.

Charge Identification

- Hurt by the lack of contained tracks.
- Much lower efficiency than μ⁺ reconstruction.

Pion Simulations

- Hadron shower makes identification of track difficult.
- Kalman filter seeding optimized for muons.

π^+ Samples in Prototype MIND

Overall Efficiency

- Reconstruction much better at high momentum.
- Less probablility of scattering before stopping?

Charge Identification

- Like μ⁺, better charge ID at low momentum.
- Competes with reconstruction efficiency.

π^- Samples in Prototype MIND

Reconstruction hampered by both field defocussing and hadron showering.

Overall Efficiency

Charge Identification

 \blacktriangleright Both efficiencies are smaller (\sim 2%) than the focussing case.

Conclusions

- Muon reconstruction efficiency > 70% with prototype design.
 - Far detector design efficiency is 81%.
- Reconstruction efficiency less for defocussing magnetic field.
- Charge identification efficiency better than 90%
 - ► Charge ID > 98% for far detector design.
- Detector is much less efficient for pions
 - Reconstruction still does not handle hadron (or electron) showers.
 - Scattering much greater effect.
 - Kalman filter seeding optimized for muon detection.
 - Based on a range calculation.
- Pion Reconstruction efficiency < 45%</p>
 - Charge identification > 60%
 - Field defocussing does not strongly impact the result.

