WP2 - Common Software Session Introduction

AIDA 1st Annual Meeting, 28-30 March 2012, DESY

28/03/2012

Goals - "Common Software"

 Develop core software tools that are useful for the HEP community at large and in particular for the next big planned projects: sLHC and Linear Collider (ILC/CLIC)

Objectives

Task 2.1: Coordination and communication

- Monitor the progress of the work in the work package
- Coordinate and schedule the execution of the tasks and subtasks
- Prepare progress reports internal and on deliverables

Task 2.2: Geometry toolkit for HEP

- Allow the description of complex geometrical shapes, materials an sensitive detectors
- Provide interfaces to full simulation programs (Geant4), fast simulations, visualization tools and reconstruction algorithms
- · Allow for the misalignment of detector components
- Provide an interface to calibration constants and conditions data

Task 2.3: Reconstruction toolkit for HEP

- Tracking toolkit based on best practice tracking and pattern recognition algorithms
- Provide alignment tools
- Allow for pile up of hadronic events
- Calorimeter reconstruction toolkit for highly granular calorimeters based on Particle Flow algorithms

Work Package Organization

- * WP Coordinators: Pere Mato, CERN Frank Gaede, DESY
- Subtask coordinators
 - Geometry: Gabriele Cosmo, CERN
 - Tracking: Steven Aplin, DESY
 - Particle Flow: Mark Thomson, UCam
 - Alignment: Chris Parkes, UniGla
 - Algorithms in Pile-up Environments: Lucia Silvestris, INFN

Overall Strategy - Reminder

- * We committed ourselves to write re-usable and generic code that can be used later by the HEP community
- * All partner are involved in ongoing projects and develop their code in the corresponding context (ILC, sLHC)
- * We need to make sure that the developments are designed such that we address the current needs in these activities, while at the same time we pay attention to provide the toolkits in a standalone and well documented manner
- * Often the developments will be done to address an immediate need for a given experiment/project but the intention is to **deliver later a** 'standalone' packaging of it fully reusable

Adding code to the Repository

* So far very few packages added into the WP2 SVN repository

<u>File</u> ▲	Rev.	Age	Author	Last log entry
ATest/	<u>77</u>	9 months	engels	made gcc 4.4.3 compliant
DD4hep/	260	3 days	muennich	Extracted ILDExTPC class from xml reader code. Extension to Facto
USolids/	256	2 weeks	marek.gayer	Works
aidaExample/	212	5 months	engels	changed hello_world for using streamlog
aidaNightly/	78	9 months	engels	changed CDash submission type from Experimental to Nightly
cmake4hep/	<u>76</u>	9 months	engels	bug fix: macro input argument immutable
<u>eUtil/</u>	<u>75</u>	9 months	engels	fixed doc links
streamlog/	<u>79</u>	9 months	engels	added some simple tests to check hello world example with different

- It is not urgent but packages are already in 'working' state, they sould be put already into the repository
 - Good indication of progress
 - Ensuring generality and independence

Adding Content to the Web

https://aidasoft.web.cern.ch

- So far very few pages has been added into the WP2 web
 - Some exceptions: Alignment links and references, Geometry packages
- Based on Drupal 7 and hosted by CERN-IT service
- Everybody (with a CERN account) can create and edit content using a normal Web browser.
- Current permissions
 - Anonymous users can read published content (pages, articles, forum topic)
 - Registered users can create new content and edit pages but deletion allowed
 - Administrators can do basically anything

1st Year Challenges - Reminder

- Make a coherent program of work out of these apparently disconnected plans
- * Ensure the adequate connections between WP2/WP9/WPx
- Coding standards & conventions that we wish to enforce across the collaboration
- Many technical details still to be defined
 - Standalone tools without large duplications
 - Dependency of a framework?
 - Languages supported

*

WP2 Deliverables

Delive- rable Number	Deliverable Title	Partners (lead beneficiary)	Dissemi- nation level ⁶³	Delivery date ⁶⁴
D2.1	Project web infrastructure to document software packages	CERN 5.00 O	PU	3
D2.2	Central code repositories and other infrastructure required for the software development	DESY 5.00 O	PP	4
D2.3	Software design for geometry toolkit including the interfaces for the reconstruction toolkits	CERN, DESY, LLR, UniGla, STFC	PU	12
D2.4	Software design for tracking toolkit	DESY, CERN, OeAW, KFK		12
D2.5	Software design for PFA tools	Ucam, LLR, CERN,	PU	12
D2.6	Design for handling the pile-up in sLHC	INFN, NTU, KFKI	PU	17
D2.7	Software toolkit for detector geometry, materials and detection technologies	CERN, DESY, LLR, UniGla, STFC	PU	38
D2.8	Software toolkit with tracking algorithms	DESY, CERN, OeAW, KFK	KI	38
D2.9	Particle Flow software tools	Ucam, LLR, CERN,	PU	38
D2.10	Alignment tools software tools	UniGla 30.00 O	PU	38
D2.11	Trigger simulation software tool	STFC 20.00 O	PU	38
		Total 350.00		

done
done
ongoing
ongoing
done
next

WP2 Milestones

Milestone number 59	Milestone name		Partners (lead beneficiary)				Comments
MS10	Running first prototype of the particle flow algorithm.	U	cam,LLR	,CEF	SN	10	Application to LC detector (Task 2.3)
MS11	Running prototype of tracking toolkit includir some algorithms	ng	DESY			18	Application to ILD-TPC simulation (Task 2.2)
MS12	Running prototype of the geometry toolkit		CERN, DESY, LLR		26	Application to ILD detector simulation (Task 2.2)	
MS13	Running prototype of the tracking code for the pile-up	IN	IFN, NTU	, KF	ΚI	26	Application to sLHC simulation (Task 2.3)
MS14	Integration of tracking toolkit into LC softwa framework	DE	SY, CERN	, Oe	eA۷	V ⁴⁴	Validation of physics performance (Task 2.3)
MS15	Application of PFA tools to sLHC detectors		Ucam, LLR		44	Demonstration of concept (Task 2.3)	
MS16	Application of alignment tools to sLHC		UniGla			44	Validation of performance (Task 2.3)
MS17	Integration of pile-up tracking code in sLHC software frameworks		INFN, N	TU,	KF	ΚI	Validation of tracking efficiency (Task 2.3)

done next

Today's Agenda

11:00	Introduction	MATO VILA, Pere et al.
	Sem 3, DESY	11:00 - 11:20
	Status of Geometry - USolids	GAYER, Marek
	Sem 3, DESY	11:20 - 11:40
	Status of Geometry: DD4Hep	MATO VILA, Pere
	Sem 3, DESY	11:40 - 12:00
12:00	Status of Tracking Task	APLIN, Steven
	Sem 3, DESY	12:00 - 12:20
	Status of Alignment Task	PARKES, Chris
	Sem 3, DESY	12:20 - 12:40
	Timing of hadronic showers in geant4	RAMILLI, Marco
	Sem 3, DESY	12:40 - 13:00
13:00	Lunch	
14:00	DESY	13:00 - 14:00
14.00	WP2 Common Software	
15:00		