New trends in Silicon tracking detectors for High Energy Physics

Doris Eckstein

AIDA 1st Annual Meeting Students Tutorial 27 March 2012, DESY

Outline

- Todays Detectors
- Requirements for future detectors
- The high-luminosity LHC challenge:
 - → radiation damage
 - → concepts for rad-hard sensors
 - → upgrade examples (ATLAS-IBL, CMS pT modules)
- Towards a vertex detector for a linear collider (PLUME)

Currently at the LHC

LHC Example – CMS Tracker

Largest silicon tracker

• Micro Strip Tracker:

• ~ 214 m² of silicon strip sensors, 11.4 million strips

• Pixel:

- Inner 3 layers: silicon pixels (~ 1m²)
- 66 million pixels (100x150µm)
- Precision: $\sigma(r\phi) \sim \sigma(z) \sim 15 \mu m$
- Most challenging operating environments (LHC)

Strip vs. Pixel

★ A strip detector measures 1 coordinate only. Two orthogonal arranged strip detectors could give a 2 dimensional position of a particle track. However, if more than one particle hits the strip detector the measured position is no longer unambiguous. "Ghost"-hits appear!

True hits and ghost hits in two crossed strip detectors in case of two particles traversing the detector:

'ahosts"

Use strips for outer radii

★ Pixel detectors produce unambiguous hits!

Measured hits in a pixel detector in case of two particles traversing the detector:

Use pixels for inner radii (high occupancy)

- ✓ Small pixel area → low detector capacitance (≈1fF/Pixel)
 - → large signal-to-noise ratio (e.g. 150:1).
- ✓ Small pixel volume → low leakage current (≈1 pA/Pixel)
- Large number of readout channels
- Expensive to cover large areas

Strips, hybrid and monolithic pixel technologies

Strip detectors

Hybrid Pixel Detectors Principle

Sensor and FE chips decoupled

Monolithic Pixel Detetcors

Generation & processing of signal in same substrate

The variety of pixel technologies

What defines the Future?

Rate and radiation challenges at the innermost pixel layer

	Hybrid Pixels			
	BX time	Particle Rate	Fl uence	Ion. Dose
	ns	kHz/mm²	n _{eq} /cm² per lif <mark>e</mark> time*	kGy per lifetime*
		<u> </u>	<u> </u>	
LHC (10 ³⁴ cm ⁻² s ⁻¹)	25	1000	1.0 x 10 ¹⁵	790
sLHC $(10^{35} \text{ cm}^{-2}\text{s}^{-1})$	25	10000	1016	5000
SuperBFs (10 ³⁵ cm ⁻² s ⁻¹)	2	400	~3 x 10 ¹²	100
ILC (10 ³⁴ cm ⁻² s ⁻¹)	350	250	10 ¹²	4
RHIC (8x10 ²⁷ cm ⁻² s ⁻¹)	110	3,8	1.5 x 10 ¹³	8
	lower rat			
Monolithic Pixels -	lower radiation smaller pixels		assumed lifetimes: LHC, sLHC: 7 years	

less material

Slide: N.Wermes at annual workshop of the Helmholtz Alliance Dec.2011, Bonn

ILC: 10 years

others: 5 years

What drives the Future?

- > Physics requirements
- Experimental conditions
- Developers ambition

	Hybrid pixels	MAPS/DEPFET
Good S/N	yes	no/yes
~µm space resolution	~10µm (4µm possible)	possible
~ns time resolution	yes (at LHC)	slow (rolling shutter)
>10 MHz/mm ² rate capability	tbd for hl-LHC	<0.4 MHz/mm ²
Radiation hard to 5MGy	tbd for hl-LHC	< 100kGy
Radiation length per layer <0.2% x/X ₀	3.4%	possible
monolithic	hybrid	more or less

after: N.Wermes at annual workshop of the Helmholtz Alliance Dec.2011, Bonn

LHC detector upgrades

- Several upgrades planned for LS1 and LS2
- After LS3 high-luminosity era starts
- Examples for upgrades:
 - IBL (Phase 0)
 - 4-layer CMS Pixel, LHCb VELO upgrade (Phase 1)
 - new trackers for Phase 2

The high-luminosity LHC Challenge

Radiation Environment at the HL-LHC

What we expect in the CMS experiment (very similar to ATLAS)

Radiation hardness requirements for:

-Innermost Pixels

 $\Phi_{\rm eq}$ ≈ 2x10¹⁶ cm⁻²

- Innermost Strips

 $\Phi_{eq} \approx 1 \times 10^{15} \, \text{cm}^{-2}$

Occupancy influences choice of geometry: Pixel, strixel, strip

Particle Fluences are shown!

Radiation Environment at the HL-LHC

What we expect in the CMS experiment (very similar to ATLAS)

Radiation hardness requirements for:

-Innermost Pixels

 Φ_{eq} ≈ 2x10¹⁶ cm⁻²

- Innermost Strips

 $\Phi_{\rm eq} \approx 1 \times 10^{15} \, \rm cm^{-2}$

Note:
Particle Fluences
are shown!

Radiation Environment at the HL-LHC

What we expect in the CMS experiment (very similar to ATLAS)

Radiation hardness requirements for:

-Innermost Pixels

 Φ_{eq} ≈ 2x10¹⁶ cm⁻²

- Innermost Strips

 $\Phi_{\rm eq} \approx 1 \times 10^{15} \, {\rm cm}^{-2}$

Particle Fluences are shown!

Radiation Damage in Silicon Sensors

- Particles passing through silicon material loose energy through
 - interaction with shell electrons (Ionizing Energy Loss)
 - → surface damage (relevant for XFEL)
 - → local charges accumulate in surface (charges cannot recombine in insulating surface
 - amorphous Si, SiO₂ thus it causes damage in the surface)

- → IEL is used for particle detection
- → fast recombination in silicon bulk → no damage in the bulk
- interaction with atomic core or whole atom (Non Ionizing Energy Loss)
 - → bulk damage (relevant for LHC)
 - → Displacement of atoms in the lattice
 - → Caused by massive particles as protons, pions, neutrons

Radiation Damage – some Basics

- Primary Knock on Atom displaced out of lattice site
 → Frenkel Pair
 - E_d ~25eV displacement threshold Energy
- •Interstitials and Vacancies are very mobile at T>150K
- → migrate through lattice
- → Annihilate (no damage remaining) or
- \rightarrow React with each other and impurities (V₂, VO,...)
- •Along path of recoil → formation of more defects
- •At the end clusters (disordered regions) are formed E_c~5keV threshold Energy for clusters

Radiation Damage in Silicon

NIEL Scaling- Normalization of damage from different particles

Point defects + clusters 4145 vacancies 8870 vacancies 0 0.5 1 0 0.5 1 x (µm) 24 GeV/c protons Dominated by clusters 8870 vacancies 1 MeV neutrons

- Proton damage can be scaled to neutron damage
- Proton & neutron damage ADD UP
- "1 MeV neutron equivalent"

Scale to "1 MeV neutron equivalent" with

$$\kappa = \frac{\int D(E)\phi(E)dE}{95MeVmb \cdot \Phi} = \frac{\Phi_{eq}}{\Phi}$$

Radiation Damage: Leakage Current

...fluence dependent

$$\Delta I = \alpha \cdot V \cdot \Phi_{eq}$$

Damage parameter α is universal

- •independent of material
- •Independent of type of irradiation

Deep defects act as generation centres

Increase of leakage current is due to radiation induced defects

Current increase results in

- → Increase of shot noise
- → Increase of power dissipation
- → Risk of thermal runnaway

Leakage current is strongly T dependent (doubles every 8°C)

Cooling helps!

Down to ~-20°C for hl-LHC

Radiation Damage: N_{eff}

...fluence dependence

$$V_{dep} = \frac{q_0}{\varepsilon \varepsilon_0} \cdot \left| N_{eff} \right| \cdot d^2$$

- Acceptors compensate original doping
- Type inversion from n- to p-type
- Increase of depletion voltage after Space Charge Sign Inversion
- → Detector becomes p-in-p
- → p-n-junction from wrong side
- → Loss of resolution

- Need depletion from strip-side!
- Change of N_{eff} depends on material!
- → Needs prediction of N_{eff} for specific material

Radiation Damage: Trapping

- Defects act as trapping centres
 - → Reduction of collected charge
- Trapping is dominant effect at Φ>1x10¹⁵ cm⁻²
- Effective trapping times for e- und h+
- Trapping of e⁻ und h⁺ similar
 - → No influence of material seen

But:

- Collection time 3x smaller for e⁻
 - → Collect e⁻!
- Needs n-side read-out

particle fluence -
$$\Phi_{eq}$$
 [cm⁻²]

$$au_{eff}(10^{15}n_{eq}) = 2ns$$
 $w = v_{sat}\tau_{eff} = 200 \mu m$ $\tau_{eff}(10^{16}n_{eq}) = 0.2ns$ $w = v_{sat}\tau_{eff} = 20 \mu m$

How to obtain radiation-hard sensors

Material Engineering

- Silicon materials FZ, MCZ, DOFZ, EPI
- Other semiconductors

Device Engineering

- p-in-n, n-in-n and n-in-p sensors
- 3D sensors
- thin devices

Material: FZ, MCz and EPI

Float Zone process (FZ)

- All strip detectors made of FZ
- Some pixels use DOFZ

Oxygen enrichment (DOFZ)
Oxidation of wafer at high
temperatures

Czochralski silicon (Cz)

Epitaxial silicon (EPI)

- Chemical-Vapor Deposition (CVD) of Si
- up to 150 µm thick layers produced
- growth rate about 1µm/min
- CZ silicon substrate used⇒ in-diffusion of oxygen

- Used by IC industry
- Difficult to produce high resistivity

Effect of Oxygen

24 GeV/c proton irradiation

Standard FZ silicon

- type inversion at ~ 2×10¹³ p/cm²
- strong N_{eff} increase at high fluence

Effect of Oxygen

24 GeV/c proton irradiation

Standard FZ silicon

- type inversion at ~ 2×10¹³ p/cm²
- strong N_{eff} increase at high fluence

Oxygenated FZ (DOFZ)

- type inversion at ~ 2×10¹³ p/cm²
- reduced N_{eff} increase at high fluence

Effect of Oxygen

24 GeV/c proton irradiation

Standard FZ silicon

- type inversion at ~ 2×10¹³ p/cm²
- strong N_{eff} increase at high fluence

Oxygenated FZ (DOFZ)

- type inversion at ~ 2×10¹³ p/cm²
- reduced N_{eff} increase at high fluence

CZ silicon and MCZ silicon

"no type inversion" in the overall fluence range

- Common to all materials (after hadron irradiation, not after γ irradiation):
 - reverse current increase
 - increase of trapping (electrons and holes) within ~ 20%

n and p irradiation of oxygen rich material

• Epitaxial silicon irradiated with 23 GeV protons vs reactor neutrons

- SCSI after neutrons but not after protons!
- donor generation enhanced after proton irradiation
- •microscopic defects explain macroscopic effect at low Φ_{eq}

Radiation-induced Defects

Donors:

positive space charge

Leakage current

Acceptors:

Negative space charge

Generation depends on type of irradiation and on material!

Irradiations in mixed fields

Expose FZ and MCz sensors to

- Pions or Protons first
- Neutrons on top

MCz: damage compensated

→ donors introduced in p irradiation compensated by acceptors introduced in n irradiation

NIEL scaling – does it really work??

Be careful!

- > NIEL Scaling works extremely well for leakage current
 - Independent of particle type, material
 - Can be used as fluence monitor

- For new (oxygen rich) materials NIEL Scaling does not work!
- Damage depends on particle type and material
 - Neutrons, protons, pions ?
 - Which energy?
 - What type of material concerning initial N_{eff}, content of Oxygen, Carbon,...?

Charge Multiplication – Signal Enhancement

Charge Collection Efficiency (CCE) exceeds 1 Observed in simple diodes, planar strips, pixels and 3d devices

Explanation: Avalanche multiplication in high field region

Can this effect be used for particle detectors? How do noise, S/N and resolution behave?

Charge Multiplication - Trenching

P-type strip detector with small gain -> Similar signal before and after irradiation

- Gain limited between 2 and 10
- Multiplication occurs at low bias voltage

Problems:

Avoid Crosstalk

Avoid exceeding the dynamic range of readout electronics

Avoid higher capacitance -> Higher noise

P-type diffusion

P+ implant under N electrode
Centered, 5um wide

First production of structures finished They work!

→ CM observed

Problems:

D. Foreshaw, 19th RD50 Workshop 2011

- Leakage current high
- High cross talk

500 V

n-type substrate

- "3D" electrodes: narrow columns along detector thickness,
 - diameter: 10μm, distance: 50 100μm
- Lateral depletion: lower depletion voltage needed
 - thicker detectors possible
 - fast signal
 - radiation hard

[M.Koehler et al., RD50 Workshop, May/June 2010]

- CNM Double Sided 3d Sensors in SPS Testbeam
- Irradiation at the Karlsruhe cyclotron with 25MeV protons

Landau MPV: 49 ADC

P-type silicon

n-type silicon after high fluences: (type inverted)

p-type silicon after high fluences: (still p-type)

p-on-n silicon, under-depleted:

- Charge spread degraded resolution
- Charge loss reduced CCE

n-on-p silicon, under-depleted:

- Limited loss in CCE
- Less degradation with under-depletion
- Collect electrons (3 x faster than holes)

Dominant junction close to n+ readout strip for FZ n-in-p

Comments:

- Instead of n-on-p also n-on-n devices could be used

FZ n-in-p microstrip detectors (n, p, p - irrad)

- > n-in-p microstrip p-type FZ detectors (Micron, 280 or 300μm thick, 80μm pitch, 18μm implant)
- Detectors read-out with 40MHz (SCT 128A)

- CCE: ~7300e (~30%) after ~ 1×10¹⁶cm⁻² 800V
- n-in-p sensors are strongly considered for ATLAS upgrade (previously p-in-n used)

FZ n-in-p microstrip detectors (n, p, p - irrad)

- n-in-p microstrip p-type FZ detectors (Micron, 280 or 300μm thick, 80μm pitch, 18μm implant)
- Detectors read-out with 40MHz (SCT 128A)

- CCE: ~7300e (~30%)
 after ~ 1×10¹⁶cm⁻² 800V
- n-in-p sensors are strongly considered for ATLAS upgrade (previously p-in-n used)

no reverse annealing in CCE measurements

for neutron and proton irradiated detectors

Eff. Depletion Voltage vs Fluence

Effective depletion voltage vs fluence

The ATLAS Insertable B-Layer (2013/14)

- 4th layer inside existing detector
- 3.4 cm to the interaction point
- smaller pixels (50 x 250 μm²)
- better sensors, better R/O chip

- ⇒ Will be equipped with
 - ¼ 3d sensors in case of sufficient yield
 - oxygenated n-in-n silicon 200 µm thick

Full sensor efficiency map for an irradiated planar and a 3D sensor

Detector systems for the LHC upgrade – CMS pT Modules

- Need to reduce data rate --> particle momentum estimated in module
- Modules to provide trigger signals for high-pT tracks → use in level-1 trigger
- two parallel sensors at distance 1-4mm

2S:Module with two strip sensors

2 x AC coupled strip sensor with 90 µm pitch

Area: 10 x 10 cm

Strips: 2 x 1016 sensor

= 4064 Channels per module

PS: Module with one strip and one pixel sensor

1 x AC coupled strip sensors with 100 µm pitch 1 x DC coupled macro-pixel ~ 1-2 mm length Area: 10 x 4 cm size (6" wafers)

Channels: 32.768 pixels + 2032 strips

CMS tracker layout options

- A: standard strip modules at r < 50 cm</p>
- > B & C
 - PS modules at r < 50 cm</p>
 - 2S modules at r > 50 cm

More design options under investigation

Sensor material + layout, tracker configuration not yet chosen

Finite Element Modeling of Modules

- Model materials (sensors, CF structures, glues, heat spreaders,...)
- Model thermal loads of chips and of sensors after irradiation
- → Tune temperature of thermal contact to reach < 20°C in sensor

What defines the Future?

Rate and radiation challenges at the innermost pixel layer

	Hybrid Pixels / I			
	BX time	Particle Rate	Fluence	lon. Dose
	ns	kHz/mm²	n _{eq} /cm² per lif <mark>e</mark> time*	kGy per lifetime*
		<u> </u>	<u> </u>	
LHC (10 ³⁴ cm ⁻² s ⁻¹)	25	1000	1.0 x 10 ¹⁵	790
sLHC $(10^{35} \text{ cm}^{-2}\text{s}^{-1})$	25	10000	1016	5000
SuperBFs (10 ³⁵ cm ⁻² s ⁻¹)	2	400	~3 x 10 ¹²	100
ILC (10 ³⁴ cm ⁻² s ⁻¹)	350	250	10 ¹²	4
RHIC (8x10 ²⁷ cm ⁻² s ⁻¹)	110	3,8	1.5 x 10 ¹³	8
Monolithic Pixels lower rates lower radiation assumed lifetimes: LHC, sLHC: 7 years lower radiation less material less material				

less material

others: 5 years

The Vertex Detector at the ILC

Measure impact parameter, charge for every charged track in jets, and vertex mass.

Need:

- Good angular coverage with many layers close to vertex:
- First measurement at r ~ 15-16 mm.
- 5-6 layers out to r ~ 60 mm.
- Efficient detector for very good impact parameter resolution
- Material ~ 0.1% X₀ per layer.
- Capable to cope with the ILC beamstrahlungs background
- Single point resolution better than 3 μm.

ILD vtx det. concept

Barrel geometry

 small pixels, thin sensors, thin r/o electronics, low power (gas cooling)

What is PLUME?

Small collaboration:

Pixelated Ladder with Ultralow Material Embedding

- ILC-oriented
 - Double-sided ladders
 - Air cooled
 - Power pulsed @ T=200ms
 - × 125 mm long
 - Material budget goal ~ 0.3 % X₀
 - Results expected for mid-2012

- Redundancy
- * Alignment: faster and/or more robust
- Track finding boosted by mini-vectors
- Note: material budget increase by about 0.1%

between single- and double-sided options

Current concept:

- 6 x MIMOSA26 thinned down to 50μm
- Kaptonmetal flex cable
- Silicon carbide foam (8% density) stiffener, 2mm thickness
- Wire bonding for flex outer world connection
- Digital readout

Prototypes

- very first prototype in 2009
- first full-scale ladders were designed and fabricated in 2011
 - micro-cables are made of two 20 µm thick metal layers of copper interleaved with 100 µm thick polyimide
 - spacer material was chosen as silicon carbide foam with an 8 % density

8 Mpixels, mass 10 g equivalent to 0.6 % X_0 (cross section) and sensitive surface of 12.7 × 1.1 cm²

- Good electrical and mechanical performance
- First beam test in November 2011: data is being analyzed
- Next step: reduce to 0.3 % X₀ in 2012

MAPS

MAPS = Monolithic Active Pixel Sensor

MIMOSA 26

- CMOS process
- Signal generated in epi layer (~10 µm thickness)
 - → small (<1000e)
- Charge collected by diffusion
 - → slow
- Charge collected in n-well/p-epi junction
- Can produce small pixels (10x10 µm)
 - → High resolution
- Can thin down to ~50 µm, possibly less
- signal processing µcircuits integrated in

the sensors

used in EUDET Telecope

Telescopes within AIDA now

Timepix Telescope:

8 planes, 55um pitch, angled

Resolution at Device Under Test (with 8 planes) 1.6um

Fast, LHC speed

EUDET Telescope:

6 planes with Minosa26(50um thin, 18.4 um pitch)

Sensor resolution < 3.5 um Pointing resolution < 2 um

Small material budget (suitable for DESY testbeam)

Summary

- Radiation hardness is a main challenge for the LHC trackers
- Probably, for the LHC upgrades, hybrid solutions will be used
 - Rad-hard sensors
 - High-speed readout electronics
- > For Linear Colliders and all other applications in HEP monolithic solutions will thin materials or highly integrated devices will dominate

The variety of pixel technologies

DESY

Acknowledgements and further reading

- N.Wermes at annual workshop of the Helmholtz Alliance Dec.2011, Bonn
- A. Junkes
- > M.Moll
- > F.Hartmann
- > A. Mussgiller
- T. Bergauer
- J. Baudot
- I.Gregor

For current detector developments look at:

AIDA Academia meets Industry:

https://indico.cern.ch/conferenceOtherViews.py?view=standard&confld=158354

talks on HEP community needs

For more basics on silicon detectors:

- EDIT2011 school talks
- and many more....

