Status of WP2 Activity

Frank Gaede, DESY
Pere Mato, CERN
AIDA Annual Meeting
March 30, 2012

Outline

- Introduction
 - organization of WP2
 - deliverables and milestones
- Status of tasks
 - geometry
 - tracking
 - particle flow
 - pile-up
 - alignment
- Summary

goal of WP2 - Common Software

- develop core software tools that are useful for the HEP community at large
- in particular for sLHC and Linear Collider (ILC/CLIC)
- strategy: develop tools in the context of the corresponding groups and frameworks, while having general application (reuse!) as a design criterion from the start

Task 2.2: Geometry toolkit for HEP

- Allow the description of complex geometrical shapes, materials an sensitive detectors
- Provide interfaces to full simulation programs (Geant4), fast simulations, visualization tools and reconstruction algorithms
- Allow for the misalignment of detector components
- Provide an interface to calibration constants and conditions data

Task 2.3: Reconstruction toolkit for HEP

- Tracking toolkit based on best practice tracking and pattern recognition algorithms
- Provide alignment tools
- Allow for pile up of hadronic events
- Calorimeter reconstruction toolkit for highly granular calorimeters based on Particle Flow algorithms

work package organization

TASK	PERSON
Coordination	Frank Gaede, DESY Pere Mato, CERN
Geometry	Gabriele Cosmo, CERN
Reconstruction	
Tracking	Steven Aplin, DESY
Particle Flow	Mark Thomson, UCam
Alignment	Chris Parkes, UMan
Tracking and Vertexing in Pile-Up	Lucia Silvestris, INFN

Participant	Person-Months
CERN	60
OeAW	24
CNRS/LLR	61
DESY	71
NTUA	4.5
MTA-KFKI	17
INFN	38
UCAM	47
UNIGLA/UMAN	43

total: 397

~1/3 funded by EU

Deliverables for WP2

Delive- rable Number	Deliverable Title		rtners peneficia	ry)	Dissemi- nation level ⁶³	Delivery date 64	
D2.1	Project web infrastructure to document software packages	CERN	5.00	0	PU	3	done
D2.2	Central code repositories and other infrastructure required for the software development	DESY	5.00	o	PP	4	done
D2.3	Software design for geometry toolkit including the interfaces for the reconstruction toolkits	CERN, I UniGla,	DESY, LL STFC	R,	PU	12	ongoin
D2.4	Software design for tracking toolkit	DESY, O	CERN, O	eAW,	KĘKI	12	ongoin
D2.5	Software design for PFA tools		LR, CER		PU	12	done
D2.6	Design for handling the pile-up in sLHC	INFN, N	NTU, KFK	I	PU	17	next
D2.7	Software toolkit for detector geometry, materials and detection technologies	CERN, 1 UniGla,	DESY, LL STFC	R,	PU	38	
D2.8	Software toolkit with tracking algorithms	DESY, O	CERN, O	eAW,	KFKI	38	
D2.9	Particle Flow software tools	Ucam, L	LR, CER	N,	PU	38	
D2.10	Alignment tools software tools	UniGla	30.00	0	PU	38	
D2.11	Trigger simulation software tool	STFC	20.00	0	PU	38	
	-	Total	350.00		-		5

WP2 - Milestones

Milestone number ⁵⁹	Milestone name	Partners (lead beneficiary)			Comments	
MS10	Running first prototype of the particle flow algorithm.	Jcam,LLR,	CERN	10	Application to LC detector (Task 2.3)	done
MS11	Running prototype of tracking toolkit including some algorithms	DESY		18	Application to ILD-TPC simulation (Task 2.2)	next
MS12	Running prototype of the geometry toolkit	CERN, D LLR	ESY,	26	Application to ILD detector simulation (Task 2.2)	
MS13	Running prototype of the tracking code for the pile-up	NFN, NTU	, KFKI	26	Application to sLHC simulation (Task 2.3)	
MS14	Integration of tracking toolkit into LC softwa framework	ESY, CERN	l, OeAV	44	Validation of physics performance (Task 2.3)	
MS15	Application of PFA tools to sLHC detectors	Ucam, LI		44	Demonstration of concept (Task 2.3)	
MS16	Application of alignment tools to sLHC	UniGla		44	Validation of performance (Task 2.3)	
MS17	Integration of pile-up tracking code in sLHC software frameworks	INFN, N	TU, KF	ΚI	Validation of tracking efficiency (Task 2.3)	

Deliverable 2.1 - WP2 Web site

- created web site for documentation of WP2 sub tasks and software projects
- based on Drupal system
 - http://aidasoft.web.cern.ch
- provides:
 - general documentation for software projects
 - link to code repositories
 - discussion forum

deliverable report:

http://cdsweb.cern.ch/record/1379521

Deliverable 2.2 - WP2 Code repository

- created svn code repository for AIDA WP2
 - https://svnsrv.desy.de/viewvc/aidasoft/
- utilities for building HEP software packages with CMake
- · logging library
- simple scripts for including software tests in project
- CDash server for dashboard with nightly test results
 - http://aidasoft.desy.de/CDash

deliverable report:

http://cdsweb.cern.ch/record/1383272

Agenda of WP2 session

- very interesting talks and fruitful discussions
- · unfortunately not all beneficiaries could be present

Geometry - USolids

[Marek Gayer]

implementation of geometrical 3D primitives for Geant4 and ROOT including new 'union of many' shape

phase 1 completed: design, first prototype and software tests

phase 2: box, orb, trd, union of many completed, performance tests

(comparison geant4, ROOT, USolid) Performance of methods at folder trd-10k-p ROOT Scaling of Multi-Union inside method with boxes Multi-Union 1st version Multi-Union 2nd version Boolean solid Number of nodes

Geometry - DD4Hep [Pere Mato]

- DD4Hep: Detector Description for High Energy Physics
 - design exists based on C++ plugins/python scripts and TGeo implementation
 - first prototype implementation exists for simplified LC tracking detectors

- deliverable 2.3 "software design for geometry" slightly delayed by about 2 months
- institutes: CERN, (DESY, LLR)

GDML

Content

Tracking

[Steven Aplin]

- in 2011 complete re-write of of iLCSoft tracking software
 - topological TPC patrec
 - forward patrec w/ cellular automaton
 - definition of MarlinTrk interface
 - decouple tracking finding and fitting
- currently finalizing tracking package for massive DBD MC production
- serves as prototype for tracking toolkit in AIDA
- deliverable D2.4 'software design for tracking toolkit' is slightly delayed by 2-3 months
 - reason is tight manpower situation and preparation for the ILC-DBD
- institutes: DESY, OEAW
- upcoming MS11: prototype for iLC tracking (M18)

Particle Flow

- Calorimeter reconstruction toolkit for highly granular calorimeters based on Particle Flow algorithms
- good progress has been made with the Particle Flow tools work package with all institutes making significant contributions
 - design for a powerful new particle flow reconstruction framework designed with generic applications in mind
 - re-implemented existing LC PFA in new PandoraPFA framework
 - successful application to 3TeV events at CLIC in context of CDR
 - development of reconstruction algorithms for digitial and semi-digital

highly granular calorimeters

- milestone M10: "Application of PFA to Linear Collider" reached
- deliverable D2.5 'design of Particle Flow software tools' submitted on time

Tracking and Vertexing w. Pile Up

- provide tracking and vertexing tools for high multiplicity hadronic events with pile up
- subtask has made considerable progress in the context of LHC experiments:
 - code development of new phase I geometry for CMS Pixel system integrated in CMSSW framework
 - study to improve the CPU performance of the CMS tracking finding
 - development of a Legendre transform based track finding for ATLAS
 - development of a detector independent vertexing package for high pile up at colliders
 - development of rapid tracking detector simulation for triggers
- no milestones or deliverables in subtask so far
- upcoming D2.6: design for handling the pile-up in sLHC (M17)
- institutes: INFN, KFKI, MTUA, STFC

Alignment

[Chris Parkes]

- development of generic alignment tools
- work has focused on the development of alignment for the LHCb silicon vertex locator (VELO)
- study of weak modes in alignment for LHCb performed.
- alignment monitoring package for LHCb developed
- plan to apply alignment techniques and DD4Hep to WP9 medipix telescope
- → nice synergy between AIDA WPs

2011 data

• institute: University of Manchester (transferred from Glasgow)

■ within ± 5 μm for Tx

Summary

- in WP2 we develop core software tools that are useful for the HEP community at large
- develop tools in context of existing experiments/frameworks
 but eventually have experiment independent tools
- work organized in sub tasks
 - geometry
 - tracking
 - particle flow
 - pile-up
 - alignment
- in first year we have made good progress towards our goals and objectives:
 - one milestone achieved on time
 - three deliverables on time
 - currently working on two deliverables that are slightly delayed