

Status Summary of the AIDA WP9.3 Activities

Hanno Perrey

28th of March 2012, $1^{\rm st}$ Annual AIDA Meeting

-

IN 14 TE

Reminder: WP9.3 Objectives

- Development of a versatile beam telescope able to characterize detector prototypes, satisfying the demanding requirements in terms of cooling infrastructure, read-out speed and precision
- Development of an off-beam infrastructure for the evaluation of thermo-mechanical properties of Vertex Detector prototypes

2 / 17

WP9.3 Objectives in More Detail

Task 9.3.1 Telescope

... builds on the telescope infrastructure developed as part of EUDET:

- A versatile and modular pixel telescope is to be built using state-of-the-art pixel devices (TimePix, ATLAS FE-I4 and MIMOSA) to meet the requirements of a broad user community. The telescope must provide a precise set of reference measurements and must be capable of LHC-speed response and time-stamping.
- CO₂ cooling plant
- Common analysis software

Deliverable 9.4 in month 37 Milestone with design in 13

Task 9.3.2 Thermo-mechanical infrastructure

 Development of an infrastructure that allows to evaluate the thermo-mechanical performance of fully integrated detector prototypes under a realistic power load.
 Deliverable 9.1 in month 33

Milestone with design in 13

3 / 17

The EUDET Telescope

- EUDET telescope used by many groups in 2011
- Telescope was running extremely smoothly
- Running here at DESY until May
- Users scheduled for May till November at SPS-H6B
- Most user are planning to request transnational access (TA)

Components of the EUDET Telescope

System set up by Strasbourg, connection to EUDAQ done by DESY

Hanno Perrey (DESY)

AIDA WP9.3 Status

The Trigger Logic Unit (TLU)

• Existing TLU designed to give a simple but flexible interface to trigger/timing signals at EUDET JRA1 beam-telescope

- Low cost
- Used by many ILC, LHC and "non-aligned" groups.
- Many copies build by Uni Göttingen to fulfill growing demand
- Existing TLU works. Why a new one?
- Want to move to one-trigger-per-particle (not one trigger per telescope frame) needed for LHC detectors.
- Cheaper to produce TLUs for integration in home labs.
- Decided that a AIDA high speed TLU is needed and defined the details.
- Mini TLU prototype in preparation

A = A = A = E

Final track hits

(root ntuple)

Fitter

tracks

build final

DUT analysis

One Technology: ATLAS FE-I4

- FE-I4 properties:
 - $\blacktriangleright~50\,\mu m \times 250\,\mu m$ pixel size
 - array size: $80 \operatorname{col} \times 336 \operatorname{rows}$
 - ▶ large area: 4 cm²
 - ▶ max. trigger rate: 200 kHz
 - HitOr signal for self-trigger
- FE-I4 module-based reference planes offer...
 - high rate and high occupancy capability
 - large area $\sim 4\,{
 m cm}^2$
 - fast self-triggering in defined region of interest
- R/O fully integrated in common infrastructure of the "AIDA telescope" framework:
 - mechanics: cold operation (DESY/Wuppertal)
 - DAQ-software based on the EUDAQ package
 - reacts to TLU signal
 - can send trigger signal to TLU (see next slide)

A = N A = N = I = 000

ATLAS FE-I4 as Telescope Trigger

- FE-I4 features fast HitOr: a wired OR over all pixels
- each pixels HitOr can be switched on/off
- ⇒ can define *region of interest*
 - successfully tested with EUDET telescope at DESY using Mimosa26 reference planes
 - successfully tested two, FE-I4 planes at ELSA

$\begin{array}{l} \text{trigger mask} \\ 3\times10\,\mathrm{mm}^2 \end{array}$

EUDET hitmap

ELE NOR

Single Arm Large Area Telescope (SALAT)

- Prominent features of SALAT:
 - very low material budget: $50\,\mu{
 m m}$ Si
 - high resolution: ~ 4 µm in x and y
 → beam particle impact position on DUT known within ~ 2 µm
 (~ 1 µm on reduced area)
 - \blacktriangleright large detection area : 4 \times 6 $\rm cm^2$

- Production of sensors in two steps:
- Start with demonstrator based on MIMOSA-28 sensors (fabricated for the STAR-PXL)
 - allows setting up the full device and read-out chain
 - \blacktriangleright provides 39 \times 37 mm^2 active areas for users already in 2013
- Replace demonstrator sensors with final SALAT sensors;
 ⇒ available for users by 2015
 - active area \sim 4 \times 6 ${\rm cm}^2$

ELE SOC

SALAT Demonstrator & Final Sensors

- SALAT demonstrator:
 - ► 50 µm thin sensors (MIMOSA-28) fabricated and tested
 - $\rightarrow \sigma_{sp} \sim ~3.5\,\mu{\rm m}$ and fake rate $\ll 10^{-4}$
 - \blacktriangleright BT plane realization starting (4 sensors on mylar foil \rightarrow 3.9 \times 3.7 $\rm cm^2)$
 - testing in lab (IPHC) by end of 2012, will be tested on beam at DESY in 2013-Q1
- Final beam telescope plane:
 - nearly twice as large planes (4 × 6 cm²), free of insensitive band, faster, etc.
 - ▶ relies on new 0.18 µm CMOS process, currently investigated (MIMOSA-32), which provides stitching
 - sensor (MIMAIDA) will be derived from R&D for CBM/FAIR, ALICE/LHC, eRHIC/BNL: Full Scale Basic Block (FSBB)
 - Milestones:
 - * Q2/2012: MIMOSA-32 techno validation (lab tests just started)
 - ★ Q2/2013: M22THR validation
 - ★ Q3/2013: SUZE-02 validation
 - ★ Q2-Q3/2014 : FSBB validation

TimePix

The TimePix Beam Telescope

- Developed in collaboration with VELO upgrade project and AIDA WP9.3
- Infrastructure upgrade in 2011, including
 - Improved DAQ
 - New portable CO₂ cooling system
- "semi-permanent" installation in H8.A area
- Available to LHCb collab. and in the framework of AIDA WP9.3 to external users

Features:

- Spatial resolution $\sim 2\,\mu{\rm m}$
- Time tagging with $\sim 1\,\mathrm{ns}$ precision
- $\bullet~\sim 15\,\rm kHz$ trigger rate
- (disadvantage: material budget degrades resolution for lower energy beams)

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

TimePix: Integration with external users

Effort to make external integration as simple as possible:

- DAQ systems run independently, information combined offline
- CO₂ cooling, remote controlled translations and full rotations, large space in z and y directions provided to DUT
- External integration works with 40 MHz style readouts without need for tagging plane.
- Proved with scintillating fibers, FE-I4 with full rotations, strip detectors, etc.
- Excellent guality FE-I4 data:

Hanno Perrey (DESY)

High-Voltage and Monitoring

- HV system for the use in the test beam ordered
- Individually floating 8 channels per module
- Channels completely independent controllable
- Hardware current and voltage limitation per module
- First modules defined for ATLAS pixels
- Different modules can easily be added ۲
- Environmental monitoring based on ELMB ۲ (Embedded Local Monitoring Board)

CO₂ Cooling

- WP9.3 includes a CO₂ cooling plant to be used when testing irradiated sensors
- Discussion showed that a system similar to the one used for the TimePix telescope would be perfect.
- Need to define the requirements

15 / 17

Off-Beam Infrastructure

Develop an infrastructure to both ...

- evaluate the thermo-mechanical performance of fully integrated detector prototypes and to
- monitor minute deformations and misalignment of prototypes
- ... under realistic environmental and power load conditions.
 - Two methods of measurement:
 - using fiber-optical sensor based on strain, temperature, and humidity monitoring (CSIC (IFCA, IFIC))
 - optical measurement of deformation using an optical grid (DESY)
 - First measurements using this infrastructure are planed for mid 2012

Plans for Commissioning & Summary

Thank you for your attention!

Overview Backup Slides

5 EUDET Telescope

6 Improving the Trigger Logic Unit (TLU)

Hanno Perrey (DESY)

AIDA WP9.3 Status

Overview Backup Slides

5 EUDET Telescope

- Overview
- Mimosa26 Sensors
- Trigger Logic Unit and DAQ
- DAQ Software and Analysis Framework
- The EUDAQ Architecture
- Telescope Performance
- Testbeam 21 @ DESY

6 Improving the Trigger Logic Unit (TLU)

A = N A = N = I = 000

- A tool to define the exact track of a particle in a beam very precisely
- Used for detailed studies of newly developed detectors
- Pointing resolution should be better than the expected intrinsic resolution of the Device Under Test (DUT)
- DUTs: small pixel sensors to larger detectors
- Flexible design:
 - distances of planes variable from 10 to 150 mm
 - ► DUT position: gap between arms variable between few cm up to 35 cm
- Low material budget

Mimosa26 Sensors

- by IPHC (Strasbourg) & IRFU (Saclay)
- MAPS Monolithic Active Pixel Sensor
- signal processing µ-circuits integrated on sensor substrate
- Pixel size: $18.4\times18.4\,\mu m^2$
- Excellent ($\approx 1\,\mu{\rm m})$ spatial resolution
- Readout in rolling shutter mode
- At $80\,\mathrm{MHz} \rightarrow 112.5\,\mathrm{\mu s}$ per frame
- No dead-time, continuous readout
- Digital readout
- On-pixel amplification
- 1 discriminator per column width
- Built-in data sparsification
- Current version of Mimosa26:
 - High resistivity epitaxial
 - Back-thinned down to $50\,\mu{\rm m}$

Mimosa26 Sensors

- by IPHC (Strasbourg) & IRFU (Saclay)
- MAPS Monolithic Active Pixel Sensor
- signal processing p-circuits integrated on sensor substrate
- Pixel size: $18.4\times18.4\,\mu m^2$
- Excellent ($\approx 1 \, \mu m$) spatial resolution
- Readout in rolling shutter mode
- At $80\,\mathrm{MHz} \rightarrow 112.5\,\mathrm{\mu s}$ per frame
- No dead-time, continuous readout
- Digital readout
- On-pixel amplification
- 1 discriminator per column width
- Built-in data sparsification
- Current version of Mimosa26:
 - High resistivity epitaxial
 - Back-thinned down to $50\,\mu{\rm m}$

EL SQA

Data Acquisition Setup

6 x Mimosa 26

National Instrument Flex RIO PXIe crate

- fast (max $800 \,\mathrm{MB/s}$)
- allows reading Mimosa sensors without dropping frames

Trigger Logic Unit (TLU)

- generates trigger signal from up to four scintillator inputs
- connects up to six DUTs
- handshake with DUTs (optional): account for DUT busy signal and read out trigger number

Hanno Perrey (DESY)

EUDAQ Software Data Acquisition System

- Allows full integration of *device under test* (DUT) independent of its technology including pre-existing DAQ systems
- Modular and flexible design
- $\Rightarrow\,$ usable by many groups:
 - Altro (Bonn)
 - APIX (Atlas Pixels)
 - Atlas (TRT)
 - CMS Pixel (DESY)
 - DEPFET (Bonn)
 - FORTIS/SPIDER (Bristol)
 - MimoRoma (INFN)
 - MVD (DESY)
 - PixelMan (Freiburg)
 - SITRA (Santander)
 - Taki (Mannheim)
 - Timepix (Bonn)
 - .. and more (NA62, Alfa, Alice, etc.)

Telescope Performance

Hanno Perrey (DESY)

Testbeam 21 @ DESY

- magnet current determines beam energy
- $\bullet\,$ rates in the order of kHz for energies $1-3\,{\rm GeV}$
- testbeam typically available to us over long periods of time

Improving the Trigger Logic Unit (TLU)

- Will start out with mini TLU prototype to test out ideas
- mini-TLU will be cheaper and easier to produce than existing TLU
- From there define the needs for a full AIDA fast TLU
- A solution: Combine LHC pixel detector with MAPS
- $\rightarrow\,$ Good spatial resolution from MAPS, timing e.g. from FE-I4
 - Asynchronous Trigger/Busy interface challenging above 100kHz
 - For > 1MHz need signals synchronous with sys clk.
 - Do we want/need a new high-rate interface?
 - Already need to define a new interface for CALICE
 - Likely to be CLOCK/TRIGGER/BUSY
 - Synchronous with system clock
 - Manchester (Phase) Encoded for DC-balance.
 - Verify data integrity using timestamps
 - Decided that a AIDA high speed TLU is needed and defined the details.