Test setup for SiPM areal homogeneity studies

Michal Tesař

Max Planck Intitute for Physics

AIDA 1st Annual Meeting 29.3.2012

Outline

- Motiovation
- Setup description
- Measurement results
- Summary

Motivation

Areal sensitivity characterization test setup

Is useful for:

- studying of SiPM detection efficiency uniformity
- quick feedback in the MPI Semiconductor Lab
- comparing different commercial and non-commercial sensors
- studying of properties of different design
- getting precise information of shape of active area
- determination of geometrical fill-factor

Goal of the measurement

Ultimate goal

Measuring the sensitivity distribution of a SiPM over its area

- separating signal from dark count and leakage current
- photon emission measurement in not capable of providing that information
- the measurement has to be done with sub-microcell resolution

Photoemission images: Hamamatsu MPPC (100 μm pitch)

• light from an LED is focused to a small point ($\phi \sim$ 1.5 μ m)

- light from an LED is focused to a small point ($\phi \sim$ 1.5 μ m)
- the LED is pulsed (10 ns long pulses, 20 000 shots per step)

- light from an LED is focused to a small point ($\phi \sim$ 1.5 μ m)
- the LED is pulsed (10 ns long pulses, 20 000 shots per step)
- SiPM response is measured in coincidence with LED pulses

- light from an LED is focused to a small point ($\phi \sim$ 1.5 μ m)
- the LED is pulsed (10 ns long pulses, 20 000 shots per step)
- SiPM response is measured in coincidence with LED pulses
- the light beam is driven through any part a SiPM matrix in discrete steps ($\geq 2 \mu m$)

- light from an LED is focused to a small point ($\phi \sim$ 1.5 μ m)
- the LED is pulsed (10 ns long pulses, 20 000 shots per step)
- SiPM response is measured in coincidence with LED pulses
- the light beam is driven through any part a SiPM matrix in discrete steps ($\geq 2~\mu m$)
- a sensitivity scan of a 1 \times 1 mm² device with 1 μ m step size can be completed in \sim 42 hours

Results: Hamamatsu (MPPC) (25 μm pitch)

sensitive area is obviously significantly reduced by the quenching resistor placed on surface of the device

Photo + photoemission image

7/14

Results: Hamamatsu (MPPC) (50 μm pitch)

sensitive area is obviously significantly reduced by the quenching resistor placed on surface of the device

Photo + photoemission image

Results: Hamamatsu MPPC (50 μm pixel pitch)

pure 1 p.e. map

integrated efficiency map

crosstalk probability map

fill-factor map

Hamamatsu MPPC 50 µm pitch

study results

- detection efficiency patterns change with over-bias voltage negligibly
- geometrical fill-factor does not change with over-bias voltage
- edge breakdown observed, disappears with increasing over-bias voltage
- much better homogeneity in comparison with SensL SPMs and MPPC 25 μm pitch

quantity	value
PDE spread	8 %
fill-factor spread	11 %
crosstalk probability	18 %
geometrical fill-factor	55 %

Table: Hamamatsu 50 µm pitch measured characteristics

Results: SensL (SPMMicro)

- SensL SPMs show structured sensitive area
- this leads low fill-factor compared to other sensors
- signs of edge breakdown have been observed

35 µm pitch

100 μm pitch

SiMPI device

- SiMPI Silicon MultiPixel light detector
- a non-convential concept of a SiPM
- developed and produced MPI Semiconductor Lab
- the SiMPI approach uses a technology of bulk integrated quench resistor

Goal

- simplify production process
- maximize light entrance window

Results: SiMPI (130 μm pitch)

no surface structures inside of a pixel \Rightarrow higher possible geometrical fill-factor

Measurements done at room temperature. Due to high dark count of 2nd iteration series, it would be better to cool the devices down.

Summary

Summary:

- setup for uniformity characterization of SiPMs has been developed
- sub-microcell resolution reached
- capability of scanning of arbitrarily oriented sensor surfaces
- successful tests of different devices have been done

Summary

Summary:

- setup for uniformity characterization of SiPMs has been developed
- sub-microcell resolution reached
- capability of scanning of arbitrarily oriented sensor surfaces
- successful tests of different devices have been done

Measurement capabilities:

- relative detection efficiency and crosstalk probability map
- fill-factor and other homogeneity measures
- characterization of single microcells over the whole array
- documentation in progress, expect to submit as an AIDA note in the next months