

AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY

AIDA WP9 Forward Calorimetry Status of Readout Electronics and Future Plans

Marek Idzik AGH-UST

Faculty of Physics and Applied Computer Science AGH University of Science and Technology

AIDA 1st Annual Meeting 27-30 March 2012 DESY

Outline

- Status and ongoing works with readout electronics developed in the past in AMS 0.35um
- Development of new readout for LumiCal detector in IBM130nm

All works done by now have been supported with non-AIDA resources. To use more efficiently the limited AIDA funds we will start to spend it in 2012!

Present Readout of LumiCal detector

Multichannel readout comprising 8 channel front-end and ADC ASICs, plus FPGA data concentrator was developed in AMS 0.35um, and integrated in the 32 channels system.

FE - M. Idzik, Sz. Kulis, D. Przyborowski, "Development of front-end electronics for the luminosity detector at ILC", NIM A 608. 32 p.169-174, 2009

ADC - M. Idzik, K. Swientek, T. Fiutowski, Sz. Kulis, D. Przyborowski "A 10-bit multichannel digitizer ASIC for detectors in particle physics experiments", IEEE Trans. Nucl. Sci. 2012, in print

32 channels readout module

•32 channels fully equipped channels (Front-end +ADC)

 ADC sampling rate is up to 20 MS/s (6.4 Gbps)

Extended trigger mechanism

- External CMOS / LVDS
- Self triggering on ADC values
- Software
- Data can be transferred using USB

 Signal handshaking with Trigger Logic Unit (TLU)

ADC Clock source

- Internal (asynchronous with beam operation)
- External (beam clock usec for synchronization) ILC mode

4 pairs of front-end+ADC ASICs

sensor connector

Data concentrator

Xilinx Spartan 3E

LumiCal detector module

Good performance of detector module verified on 2 testbeams in 2011

Power pulsing (1ms_ON/199ms_OFF, ASICs Power_ON/OFF ~40)

Two modules available (Cracow, Zeuthen), with two sensor boards (BeamCal, LumiCal)

Using deconvolution, tests for CLIC are performed with asynchronous readout

New developments in IBM 130nm

- Readout system developed in AMS 0.35um works very well, but in view of final readout of LumiCal at ILC/CLIC some parameters (power consumption, speed, radiation hardness) would need to be improved...
- The design of readout with the same architecture (FE+ADC in each channel) has been started in IBM 130nm
 - Submitted prototypes
 - 10-bit SAR ADC, PLL, SLVS I/O
 - Design in progress... to be submitted in 2012
 - Front-end, updated 10-bit SAR ADC

Segmented/Split capacitor SAR ADC

First prototype in IBM 130nm submitted in February 2012

- Architecture: 10-bit SAR ADC with segmented DAC
- Scalable frequency (up to ~50 MS/s) and power consumption
- 1-2mW at 40MS/s
- ~150um pitch

PLL for data serialization

First prototype in IBM 130nm submitted in February 2012

- Architecture: type II PLL with 2nd order filter
- Scalable frequency and power consumption
- Automatically switched VCO frequency range
- VCO frequency range 60MHz 520MHz, divided by 8 or 10
- Power consumption < 0.5mW at 500MHz
- Area 200um x 160um
- Jitter RMS<5ps

Front-end design in IBM 130nm, in progress...

Specifications, still under discussions:

- Charge Sensitive Preamplifier with PZC
- Fully differential CR-RC Shaper
- Variable gain: $0.15 \, ^{\text{mV}}/_{\text{fC}} 15 \, ^{\text{mV}}/_{\text{fC}}$ (Two modes: calibration high gain and physics low gain)
- Variable peaking time: 25 100 ns
- Cdet ~ 5 30 pF
- Noise < 0.4 fC (SNR ~ 10 for MIP)
- Power cons. ~2mW/channel

Summary and future plans

- First prototypes of main LumiCal readout blocks, designed in IBM 130nm, should be available by the end of 2012
- In optimistic scenario the projects of multichannel versions may designed and submitted in 2013. Since there are very limited AIDA resources at AGH-UST, for this aim more resources will need to be found.

Thank you for your attention