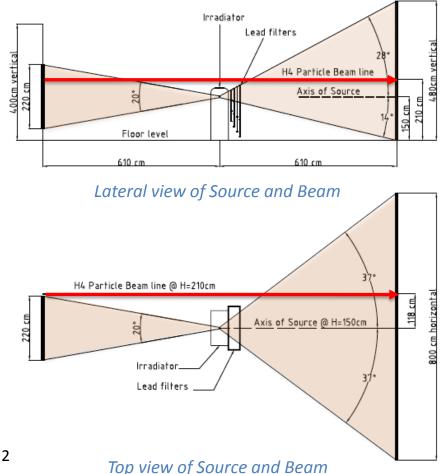
AIDA 8.5.3: GIF++ User Infrastructure Introduction and beam tracker implementation

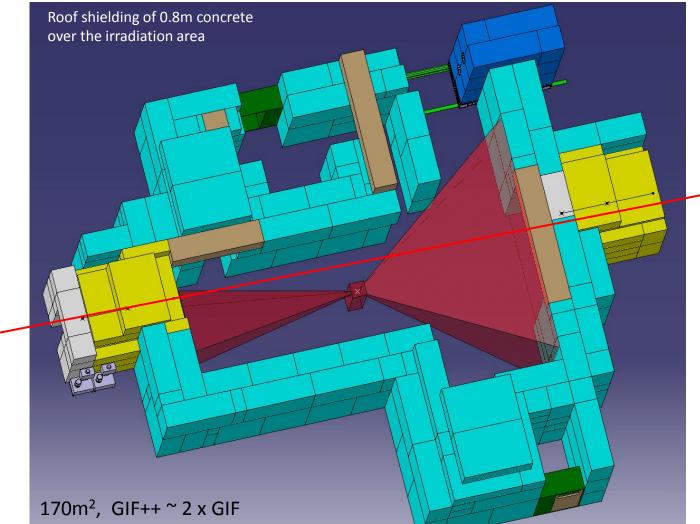
D.Boscherini, <u>G.Mikenberg</u>

WP8 1st Annual Meeting - DESY, 29 Mar 2012

GIF++ Specifications


Source

- ¹³⁷Cs, ~7-10 TBq
- Up to ~2 Gy/h at a distance of 50 cm
- 662 keV photons
- 30 y isotope half-life


Max. expected doses at sLHC	Equivalent time at GIF++ (~ 50 cm from source)
Si-trackers: ~ MGy/y	>> years
Calorimeters: ~ 20 kGy/y	< 1 year
Muon systems: ~ 0.1 Gy/y	~ minutes

Particle Beam

- EHN1 location in the SPS H4 beam
- 100 GeV muons
- 10⁴ particles per spill traversing 10x10 cm²
- available ~6-8 weeks/y (in 2-week periods)

GIF++ Bunker

100 GeV Muon beam 10⁴ /spill in 10x10 cm²

Project items

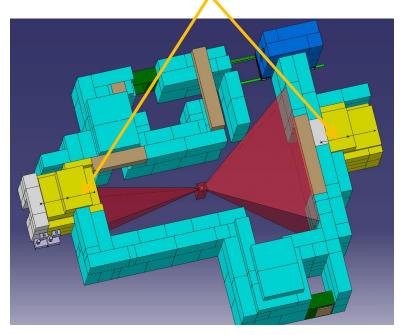
- Precise muon tracking set-up
- Large area cosmic ray set-up
- Detector Control System
- DAQ
- System for active gamma dose measurements
- System of environmental sensors

Involved institutes

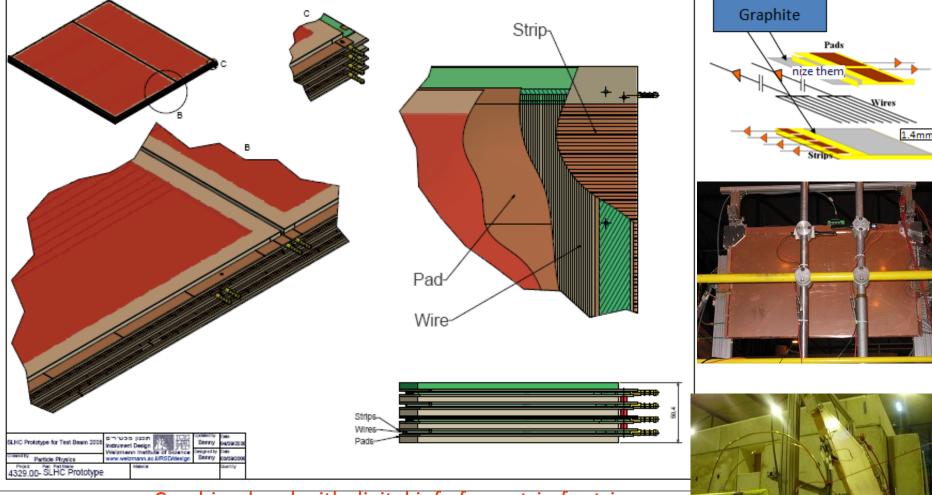
- Bulgaria: INRNE
- *Greece:* NTUA, AUTh, Demokritos, NCUA
- Israel: Weizmann, Technion
- Italy: INFN-Bari, -Bologna, -LNF, -Naples, -Rome2

AIDA	Item	Sub-item	Institute in charge	Responsible	Comment
8.5.3	Cosmic ray set-up	Detector	INFN-BO INFN-RM2	G.Aielli	
		Front-end electronics	INFN-RM2	R.Cardarelli	
		Power-supplies + cables	INFN-NA INRNE	S.Buontempo	LV -> INFN-NA HV -> INRNE
		Gas system	INFN-BA INFN-LNF	S.Bianco	
		DCS	INFN-BO INFN-RM2	A.Polini	
		Readout electronics / DAQ	?	?	MPI contacted
	Beam monitor set-up	Detector + mechanics + cables	Weizmann	G.Mikenberg	
		Front-end electronics	Technion Weizmann	S.Tarem	
		Gas system	Technion Weizmann	G.Mikenberg	
		DCS	Technion	S.Tarem	
		Readout electronics / DAQ	Technion weizmann	?	Tel-Aviv to be contacted
	DCS		INFN-BO INFN-RM2 NTUA	A.Polini	
	DAQ		NTUA + ?	?	Need manpower!
	Environmental sensors		INFN-LNF INFN-NA	S.Bianco	
	Radiation sensors		INFN-BA INRNE	P.Iaydjiev	

Project deadlines

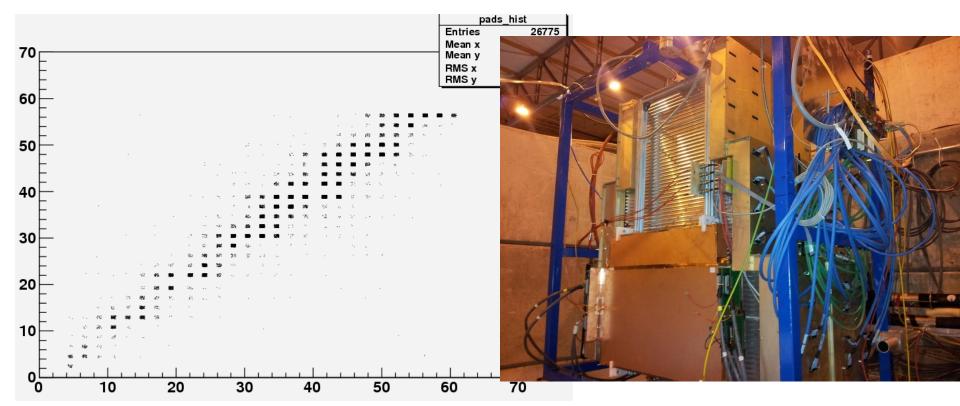

1 milestone (M8.5.3):
Design of GIF++ infrastructure
via Activity Report
18 months -> end of July 2012

1 deliverable (D8.5.3): GIF++ Infrastructure commissioning and utilization 44 months


Beam Tracker detectors for GIF++

- 2 Quadruplets were constructed
- They were tested in H8
- Their position and angular resolution were determined by comparing with a small tube MDT
- Achieved resolutions.
- Conclusions.

Expected location of the Beam Position detect.

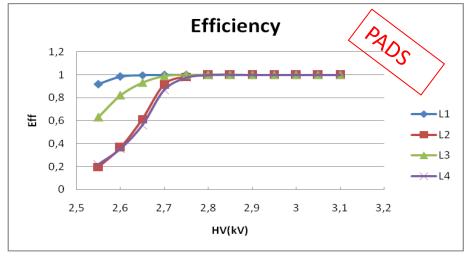

2 Quadruplets were constructed (60X40cm²) with strip, wires and pads in each gap

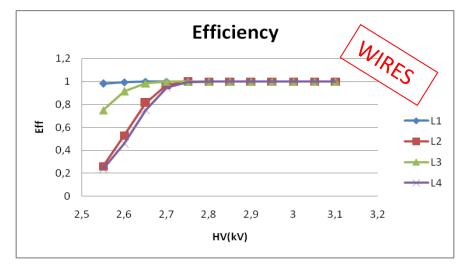
Combined pad with digital info from strip for trigger

- Proposed arrangement of individual gaps, showing the strips, wires and pads, as well as the staggering of layers.
- One multilayer of 4 gas gaps fits into 50mm.

August 2011 Test beam with sMDT sandwiched with 2 sTGC packages

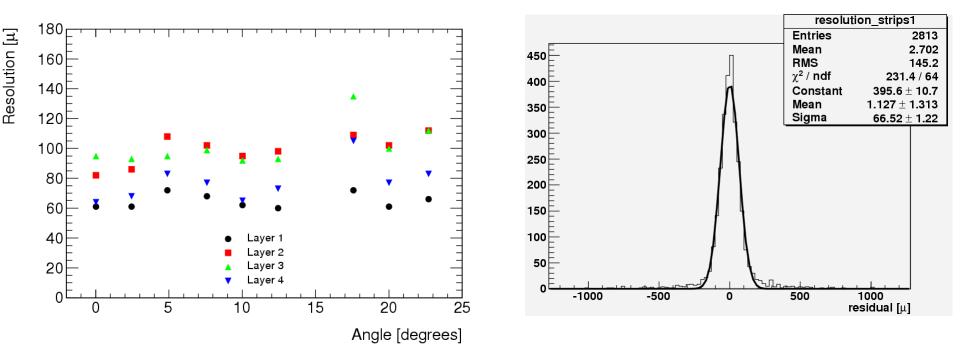
Pads are very nicely correlated as a position measurement device.

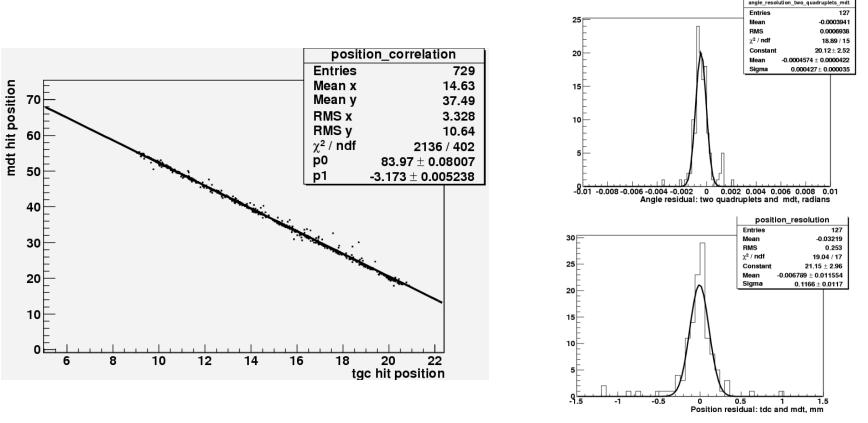

Signal from strips Analog


Threshold

For each layer we select good triggers: demand that all other layers work well in proper start-stop window and have exactly one cluster. Then we look if we see anything in the tested layer

Improve strip capacitance to allow for the use of Time-Over-Threshold measurement of charge




ATLAS IL

Very small resolution dependence on angle

 Measurement based on taking 3 layers to calculate the position of the 4th.

August 2011 Preliminary results

- Angular resolution 0.43/v2=0.3mRad
- Position resolution 0.117/√2=0.082mm

Conclusions

- The detectors to be used as a position monitor system for GIF++ have been constructed.
- Their expected angular and position resolution has been confirmed in test beam.
- The electronics to equipped the full detectors are being developed.

Beam tracker