

AIDA-WP9

Status and Plans @PM12

Angel Diéguez adieguez@el.ub.edu

- 1) Design flow
- 2) Technology selection
- 3) Functional model of a channel
- 4) Noise analysis
- 5) Amplifier design
- 6) Basic biasing current source
- 7) Future work

Low energy detectors (X-ray)

* Pawel Grybos, "Fast binary readout front-end electronics for silicon strip detectors for low energy x-ray imaging applications.

Figure 1: Schematic block diagram of the Beetle readout chip.

1- Technology analysis and selection (130nm IBM, 65nm TSMC)

- Intrinsic transistor gain
- Noise spectral density

Choosen technology: TSMC 65nm

2- Functional models of an entire channel

3- Design of the LNA / preamplifier

- Ideal amplifier with a pole and limited output
 - Amplifier specifications
- Choosen amplifier: Folded cascode
- Noise analysis
 - Input transistor size and bias

Technology analysis: Intrinsic gain

Intrinsic gain analysis:

- The DUT is biased (current mirror configuration) with an inversion factor IF and a fixed Vds.
- A parametric sweep is done for the inversion factor, from w.i. (10e-7) to s.i. (10e2)
- The intrinsic gain, taken as gm/gds is plotted against lds·L/W.
- The procedure is repeated for different L.

Technology analysis: Intrinsic gain

Technology analysis: Noise Spectral Density

* Graphic obtained with Cadence simulations (BSIM4 model).

TSMC: Higher flicker noise IBM: Higher thermal noise

Technology selection

TSMC 65nm

- Higher intrinsic gain
- Similar noise compared to IBM
- Fits more electronics

Functional model: Preamplifier + Shaper

This functional model provides the minimum requirements. Front-end amplifier:

Minimum gain: 60dB Minimum BW @ 60dB ~ 100kHz

Optimum width for a given L and lds

Característiques de soroll per diferents L i I_{ds}

L	I_{ds}	a	b	ENC~20pF	W_{optima}	Consum	IF
$0.25\mu m$	$100\mu A$	$47e^-$	$26.2e^{-}$	$570e^{-}$	$624\mu m$	$120\mu W$	0.27
$0.25\mu m$	$200\mu A$	$40e^-$	$19.1e^{-}$	$422e^{-}$	$781\mu m$	$240\mu W$	0.42
$0.25 \mu m$	$300\mu A$	$37e^-$	$15.9e^{-}$	$355e^-$	$890\mu m$	$360\mu W$	0.56
$0.25 \mu m$	$500\mu A$	$34e^-$	$12.7e^{-}$	$288e^-$	$1046\mu m$	$600\mu W$	0.79
$0.50\mu m$	$100\mu A$	$71e^-$	$28.1e^{-}$	$633e^-$	$493\mu m$	$120\mu W$	0.70
$0.50 \mu m$	$200\mu A$	$63e^-$	$20.8e^{-}$	$479e^{-}$	$613\mu m$	$240\mu W$	1.12
$0.50 \mu m$	$300\mu A$	$59e^-$	$17.6e^{-}$	$410e^{-}$	$694\mu m$	$360\mu W$	1.49
$0.50 \mu m$	$500\mu A$	$54e^-$	$14.3e^{-}$	$340e^{-}$	$808\mu m$	$600\mu W$	2.13
$0.75 \mu m$	$100\mu A$	$94e^{-}$	$29.8e^{-}$	$689e^{-}$	$428\mu m$	$120\mu W$	1.25
$0.75 \mu m$	$200\mu A$	$84e^-$	$22.4e^{-}$	$532e^-$	$528\mu m$	$240\mu W$	2.02
$0.75 \mu m$	$300\mu A$	$79e^-$	$19.1e^{-}$	$460e^{-}$	$594\mu m$	$360\mu W$	2.70
$0.75 \mu m$	$500\mu A$	$74e^-$	$15.7e^-$	$387e^-$	$683 \mu m$	$600\mu W$	3.90
$1.00 \mu m$	$100\mu A$	$115e^-$	$31.4e^{-}$	$743e^{-}$	$385\mu m$	$120\mu W$	1.89
$1.00 \mu m$	$200\mu A$	$104e^-$	$23.8e^{-}$	$581e^{-}$	$470 \mu m$	$240\mu W$	3.10
$1.00 \mu m$	$300\mu A$	$98e^{-}$	$20.4e^{-}$	$507e^-$	$525 \mu m$	$360\mu W$	4.16
$1.00 \mu m$	$500\mu A$	$92e^-$	$17.0e^{-}$	$432e^-$	$596\mu m$	$600\mu W$	6.11

ENC ~ a + b·Cd

$$ENC = \sqrt{\frac{2}{3}kT\frac{1}{g_m} 1.57 \frac{C_t^2 e^2}{\pi q^2 \tau} + \frac{K_f}{C_{ox}^2 WL} \frac{C_t^2 e^2}{2q^2} + I_{leak} 1.57 \frac{e^2 \tau}{2\pi q} + \frac{kT}{R} 1.57 \frac{e^2 \tau}{\pi q^2}}$$

Hans-Günther Moser, "Silicon detector systems in high energy physics", 2009

I=1uA, TC < 30ppm [0:100°C] P=6uW

Design of 1 channel:

- Shaper and sparsifier amplifiers
- Comparator
- Analog pipeline
- ADC
- Biasing DACs
- Digital electronics
- Multichannel design
- Look for interest in other groups for the design to accelerate the design
- Obtain more specifications: sensor characteristics, pitch, ..., readout requirements (for example number of pipelines required)
- Find budget to prototype

