Bonn / CPPM plans for 3D integration

M. Barbero, L. Gonella, F. Hügging, H. Krüger, N. Wermes (Bonn University)

J.-C. Clemens, S. Rozanov (CPPM)

March 28th 2012

Aida 1st Annual Meeting, DESY, March 27th -30th 2012

Bonn / CPPM project

- <u>Goal</u>: Interconnection of the ATLAS FE-I4 chip to sensors using bump bonding and post-processing TSVs from IZM.
- <u>Context</u>: Material reduction, new module concepts, new technologies for High Luminosity LHC upgrade.
- <u>1st goal at short time-scale</u>: Demonstrate two-side access (front and back) to a <u>bump-bonded sensor/FE stack</u>, using the FE-I₄B.

FE-I4B

Module concept with TSV: Sketch

- TSVs + backside metallization → Will allow the use of FE's backside for routing
 - Direct connection of service lines or flex on FE backside
 - Less material: no need for wings, module flex, connectors (IBL as an example: gain ~0.13%X0)

Current project with TSV

- Long term relationship between Ubonn and IZM Berlin.
 - IZM main bump bonding ATLAS pixel partner.
 - Many developments for future module addressed with IZM:
 Usage of different sensors, thin IC modules, low cost program...
- Started a via-last TSV development with IZM 3 years ago.
 - FE-I2/I3 readout electronics.
 - Tapered side wall / Straight side wall TSVs.
 (both used successfully, tapered side wall TSVs a faster process, better suited to our needs)
 - "Integrated" TSV / Bump Bonding process in-house at IZM.
 - Profits from ultra thin flip chipping R&D (developed for FE-I4 in ATLAS IBL project).

Tapered Side Walls TSV Etching

- Tapered Side Wall TSV is a fast process
 - Vias are etched in one step and oxide is deposited afterwards.
- Tapered walls
 - Side wall angle 72°
 - Via diameter on the bottom is 41μm
 - Via diameter on the top is 95μm
 - Si thickness 77μm (in this example)
 - with pad pitch of 150 μm (FE-I2) →
 maximum die thickness is 100μm

TSV: Main process flow

TSV prototypes with FE-I2/3

Frontside processing

- Cu pad to bond pad interconnect (plug)
- Bump deposition
- Dicing

Backside processing

- Thinning to 90μm
- Silicon Via etching
- Passivation
- Re-Distribution Layer (RDL)

Backside interconnection

Tapered TSVs processing on ATLAS FE-I2 batch

FE-I2 module with TSV

- Received 16 modules:
 - FE-I2 chips, 90μm thick, with tapered TSV and RDL
 - Planar n-in-n sensor
- 2 modules mounted on boards for electrical tests
 - Both modules work fine

Module front side

Module on board

Module test using TSVs

• Used "standard" IC handling method (no handle wafer) → gains time (but of course leads to large area of unconnected bonds).

• ENC ~180e-! Module works fine & no indication of extra noise

Source scan with TSV module

Threshold tuning to 3200e

Source scan (Am 241)

Next immediate step: TSV FE-I4A

- Next step: Use FE-I4A IC & same process:
 - 6 times larger than FE-I2/3 but thickness must be 90μm (note IBL chips are 150μm thick): Use thin flip chip method currently used for IBL modules.
 - FE-I₄A pads are already tuned for TSV usage (half pad area
 BEOL only, complete metal stack → No frontside plug needed)

Intermediate goal

- Usage of final version of the FE-I4 IC for IBL, FE-I4B. Tuned for TSV usage + can use the CPPM-developed GDAC to monitor more information (internal voltages, leakage currents, temperature...).
- Assess the potential for TSV of a second vendor (LETI Grenoble, France).
- Test connection to other sensor types (3D silicon, depleted HV CMOS).

Conclusion

- Successful 1st demonstration of usage of TSV on FE-I2 / I3 ATLAS FE.
 - ICs function well when operated with TSV + backside RDL (equivalent noise, source scan performed).
- A run with FE-I4A will soon start (3 wafers reserved for that). Results expected ~fall 2012.
- TSV on FE-I4B, in-situ IC characterization.
- Developments for IBL and HL-LHC upgrades lead to:
 - Integrated TSV / Bump-bonding process.
 - Handling of large & thin IC.
- <u>Goal</u>: New module concepts using TSV, material reduction, technology exploration for the High Luminosity LHC upgrade.

BACKUP

• BACKUP

Stave and module arrangement

