Work package 9 Task 9.5 Granular calorimeters

Infrastructure

R. Pöschl for and from F. Sefkow

AIDA annual meeting DESY March 2012

- WP 9: Infrastructure for detector R&D, 2.6M out of 8M
- Calorimetry 0.75M, cf EUDET: 1.99M of 7M total
- Much smaller budget, but still aim at integrating all active European partners
- Enlarged community: DHCAL effort grown after EUDET start
- AIDA is only a small part of CALICE and FCAL activities
- Proposal kept vage and general

• CERN

Partners

- DESY
- UHEI (third party)

- UCL Louvin
- IPASCR Prague
- CNRS
 - IPNL Lyon
 - LAL Orsay
 - LAPP Annecy
 - LLR Palaiseau
 - LPC Clemront
 - LPSC Grenoble

- MPG-MPP Munich
- Wuppertal
- TAU Tel Aviv
- UIB Bergen
- AGHUST Kracow
- IFJPAN Kracow

18 groups, 10k/y

WP 9.5: Calo Intro

R. Pöschl DESY,, March, 2012

Deliverables

- D 9.7: Integrated infrastructure for highly granular calorimeters
 - Due month 40 (May 2014), lead DESY
- D 9.9: Adequation of Geant 4 simulation of hadronic showers in different media (report)
 - Due month 46 (Nov 2014), lead DESY
- In WP 9.1, but probably requesting input:
- D 9.8: Infrastructure performance and utilization (report)
 - Due month 46 (Nov 14), lead CSIC

Milestones

- MS 42 Gas system, control and bench structure
 - due month 24 (Jan 2013), lead CNRS-LAPP
- MS 43 3rd generation fast read-out chips
 - due month 30 (Jul 2013), lead CNRS-LAL
- MS 44 Multilayer tungsten structure with position control and monitoring for forward calorimeters
 - due month 30 (Jul 2013), lead DESY-Z
- MS 45 Calibration and power supply system
 - due month 36 (Jan 2014), lead UIB
- MS 46 Electromagnetic calorimeter of at least 18x18cm² area
 - due month 36 (Jan 2014), lead CNRS-LLR
- MS 47 Multichannel readout ASICs for luminosity detector
 - due month 40 (May 2014), lead AGH-UST

- Mechanical structure to place and move elements
 CERN, DESY, UCL, CIEMAT
- Lumical structure, W radiator and ASICs
 - DESY, TAU, AGH-UST, IFJPAN
- ECAL extension of the EUDET module
 - IPASCR, CNRS-LAL, -LPSC, -LLR
- Hadronic structure with tungsten radiator and services
 - CERN, DESY, Wuppertal, MPG-MPP, IPASCR, CNRS-LAL, -IPNL, -LAPP, -LPC, UIB, UCL, CIEMAT

Sub-tasks

- ECAL: Daniel Jeans
 - LLR, LPSC, IPASCR
- AHCAL: Erika Garutti
 - CERN, DESY, MPG-MPP, IPASCR, UIB, Wuppertal
- DHCAL: Imad Laktineh
 - LAPP, IPNL, LPC, CIEMAT, UCL
- FCAL: Wolfgang Lohmann
 - CERN, DESY, AGH-UST, IFJPAN, TAU
- FEE: Nathalie Seguin-Moreau
 - LAL, UHEI
- TBM: Erik van der Kraaij
 - CERN, DESY, UCL, CIEMAT

Calorimeter for ILC

Meetings

- The sub-task structure just reflects the more global LC R&D organization, no new structures
- Projects will be followed in CALICE and FCAL
 - technical meetings as necessary
- AIDA annual meetings few months before reports
 - WP 9.5 parallel session
- Regular task leader phone meetings to stay in touch
 - milestone reports

Summary

- AIDA provides (at least) a very useful platform for exchange and federation of projects
- Activities well integrated in overall T&D program of projects
- Preparation for Milestones and deliverables on the way
- Benefitted already from AIDA by TA AHCAL, Ecal (others???)

Back-up slides

Reporting

Γ	A	В	C	D	E	F	G	Н		ļ	K	L	M	N	0	P	Q
Г	1																
	2		2011	L			2012		2013			2014	L				
Γ	3		IM 11	IM 12	IM 13	IM 14	IM 21	IM 22	MS 42	MS 43	MS 44	MS 45	MS-46	MS 47	D 9.7	D 9.9	
Γ	4		ECAL: valida	AHCAL stab	DHCAL stack	TBM HCAL	FCAL W desi	gn, layer prob	Gas	ASICs	W structure	calib	ECAL	lumi ASIC	int MS	G4	
	S CERN					TBM W	FCAL				FCAL design,	frame				ECAL, AHCAL	DHCAL
Γ	6 UCL				DHCAL mech	5											
Γ	7 IPASCR												ECAL - sense	ors			
	8 CNRS-IPN.				DHCAL syst					FEE - i2c						DHCAL	
Γ	9 CNRS-LAL		FEE							FEE- the res	t, incl ECAL PC	8					
	LO CNRS-LAP	Þ							DHCAL								
	11 CNRS-LLR		FEE		DHCAL anal								ECAL - sense	ors, integratio	n	ECAL	
	12 CNRS-LPC																
Г	13 CNRS-LPS	,											ECAL - cooli	ng, services			
	L4 DESY			AHCAL		TBM design	FCAL				FCAL- integr	AHCAL - inte	gr.	FCAL - integ	r	AHCAL	
	LS UHEI																
	6 MPG-MPP																
	17 Wupperta			AHCAL								AHCAL - LED	tests				
	18 TAU						FCAL				FCAL- W						
	19 UIB											AHCAL - adju	ust				
	AHGUST						FCAL					AHCAL - pov	ver	FCAL - ASIC			
	1 FJPAN						FCAL				FCAL - W, po	s control					
	22 CIEMAT				DHCAL mech	, 1											

Budget

CERN-own	CERN-own	12	- 12	81,600	48,960	15,000	15800	5,000	5080	50.000	50,080	9.5.1	9.5	755,760 AHCAI, Wiengineering & optical test stand
UHEI	UHEI	10	•	55.000	33,000	25.000	0	5,000	0	35.000	35,000	9.5.1	9.5	AHCAL Elec (SIPM fast timing electronics (ASICs))
	Wuppertal		12		39,600	10,000	10800	5,000	5090	35,000	35,090	9.5.1	9.5	AHCAL Scalable Calib System (LED system development and
				66,000										tests)
Wuppertai		12												[LED driver, Design of pulser & delay; design of pulse distrib syst.]
DESY-own	DESY-own	10	10	55,000	33,000	30,000	30800	5,000	5080	35.000	35,080	9.5.1	9.5	AHCAI, Meca (compact interfaces & integration)
MPG-MPP	MPG-MPP	10	10	55.000	77,000	25.000	25800	5,000	5080	35.000	35,080	9.5.1	9.5	AHCAI, Teststand for Solint (Tile Integration test and SIPM test)
IP-ASCR-own	IP-ASCR-own	18	18	37,800	22,680	25,000	25000	5,000	6090	26.000	28,090	9.5.1	9.5	AHCAI, Adaptive PS (temperature compensated PS)
UB	UIB	10	10	80,000	48,000	0	25000	0	5000	45,000	45,000	9.5.1	9.5	AHCAL Adaptive PS, teststand and simulations
LAL	LAL	7	2	35,000	21,000	19,000	19800	1,000	1080	20.000	20,080	9.5.1	9.5	AHCAL Elec (3" gan. ASIC)
LAL	LAL	12	12	60,000	36,000	28,000	28000	2,000	2080	30.000	30,080	9.5.2	9.5	DHCAL Elec (3 rd gen, ASIC)
LAPP	LAPP	6	6	27,500	16,500	0		0	0	15.000	16,000	9.5.2	9.5	DHCAL Gas system & control
IPNL	IPNL	12	12	81,194	48,717	0		0	0	27,000	27,080	9.5.2	9.5	DHCAL Elec dev (Slow Control)
LPC	LPC	2	2	10,000	6,000	0	0	3,680	3680	4.000	4,800	9.5.2	9.5	DHCAL Reconstruction
CIEMAT	CIEMAT	9	0	36,000	39,240	10,000	0	5,000	0	26,190	26,190	9.5.2	9.5	DHCAL Bench structure (meca)
UCL	UCL	12	12	70,800	42,480	15,000	16000	5,000	5000	43.650	43,650	9.5.2	9.5	DHCAL Bench structure (meca)
LLR	LLR	22	22	110,000	66,000	41,920	41920	5,000	5090	51,000	61,080	9.5.3	9.5	ECAL Bensors
LPSC	LPSC	9	. 9	50,764	30,458	0		0	0	27,000	27,080	9.5.3	9.5	ECAL Meda
LAL	LAL	11	11	55,000	33,000	29,000	298000	2,000	2080	31.000	31,080	9.5.3	9.5	ECAL Elec
IP-ASCR-own	IP-ASCR-own	15	15	31,500	18,900	0	0	0	0	18.000	18,080	9.5.3	9.5	ECAL Sensors
AGH-UST	AGH-UST	22	22	66,000	39,600	14,900	14800	5,000	5000	55.000	55,000	9.5.4	8.5	FCAL Elec
DESY-own	DESY-own	14	14	77,000	46,200	0		0	0	34,920	34,920	9.5.4	9.5	FCAL Meca + Elec +
IFJPAN	IFJPAN	15	15	48,750	29,250	20,000	20800	5,000	5080	55.000	55,080	9.5.4	9.5	FCAL Meca + Elec + DAQ
TAU	TAU	15	- 15	66,000	39,600	15,000	15800	5,000	5080	55.000	55,080	9.5.4	9.5	FCAL Meca + Elec + DAQ
	-								-					

