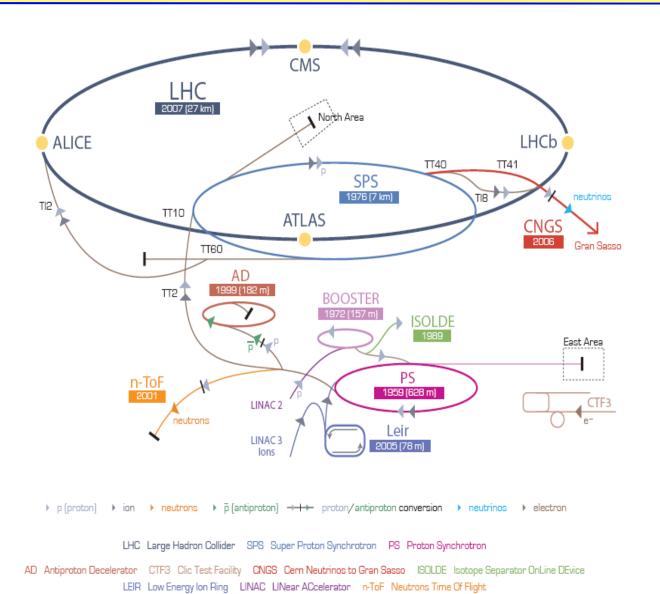


Irradiation Facilities in the CERN PS EAST HALL

WP 8.3. Status of work at CERN

Michael Moll, CERN PH-DT

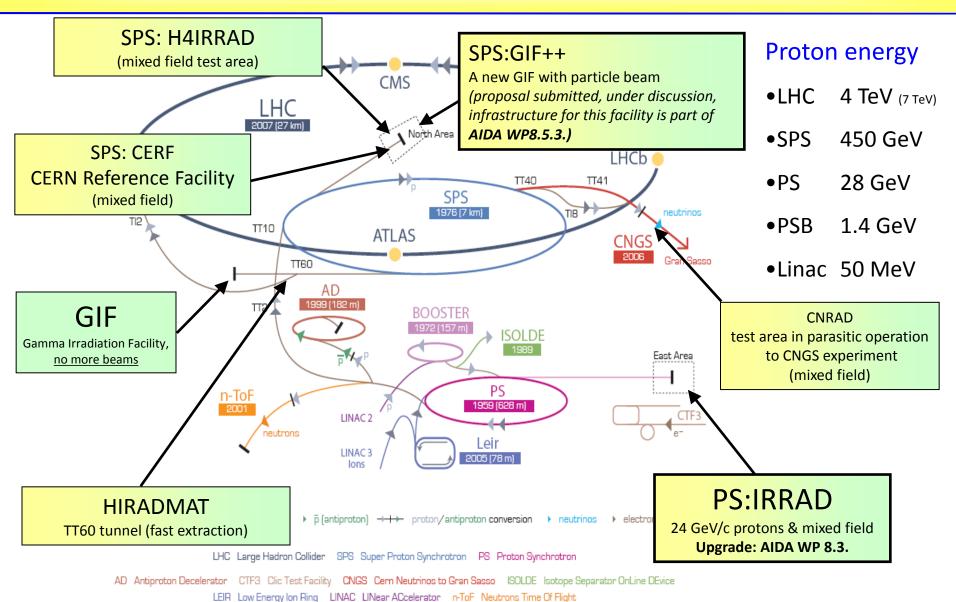
CERN contributors: Markus Brugger, Lau Gatignon, Maurice Glaser, Elias Lebbos, Michael Moll, Federico Ravotti, Stefan Roesler



Contents:

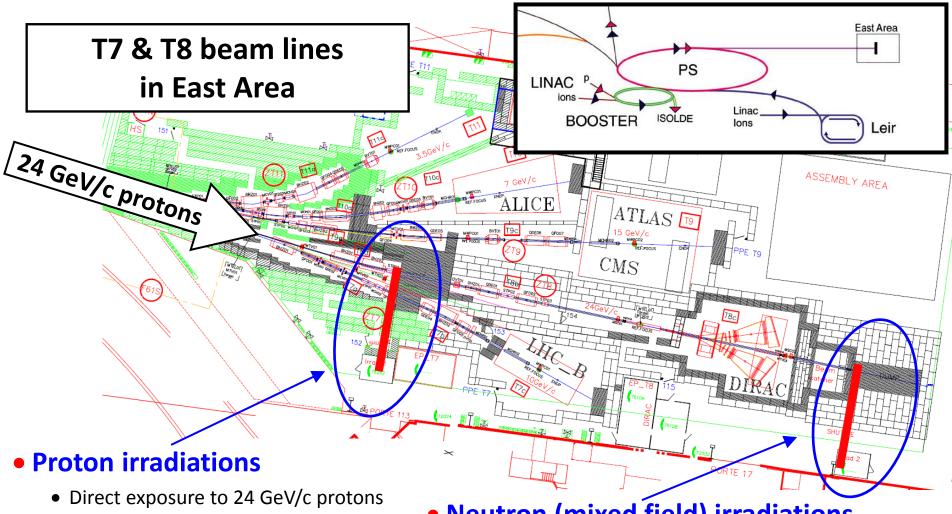
- Irradiation Facilities at CERN
- Existing irradiation Facilities in the CERN EAST HALL
- Design Study on New Irradiation Facility
- Infrastructure for new facility (8.3.2) ... see following talks
- Outlook

CERN ACCELERATORS & IRRADIATION FACILITIES



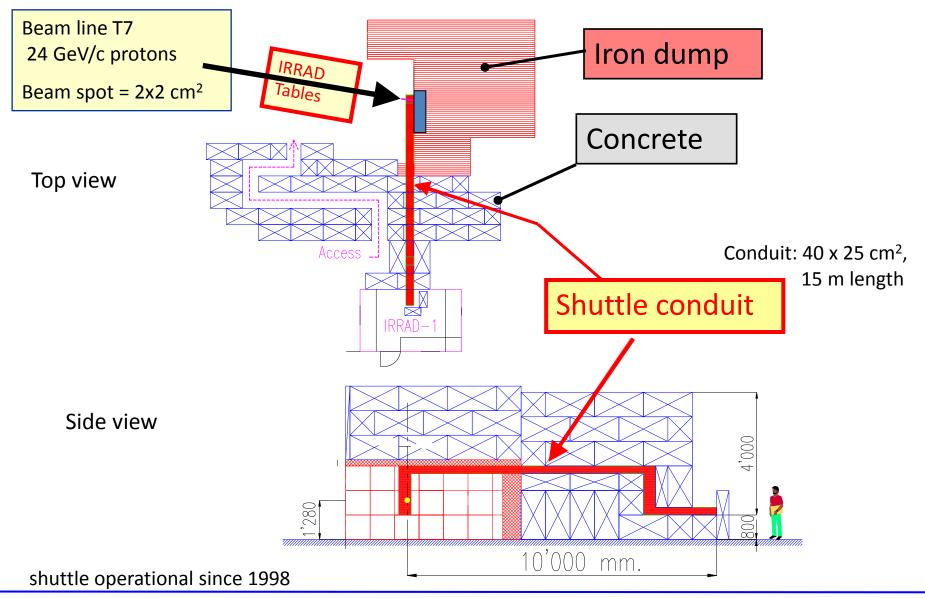
Proton energy

- •LHC 4 TeV (7 TeV)
- •SPS 450 GeV
- PS 28 GeV
- PSB 1.4 GeV
- Linac 50 MeV



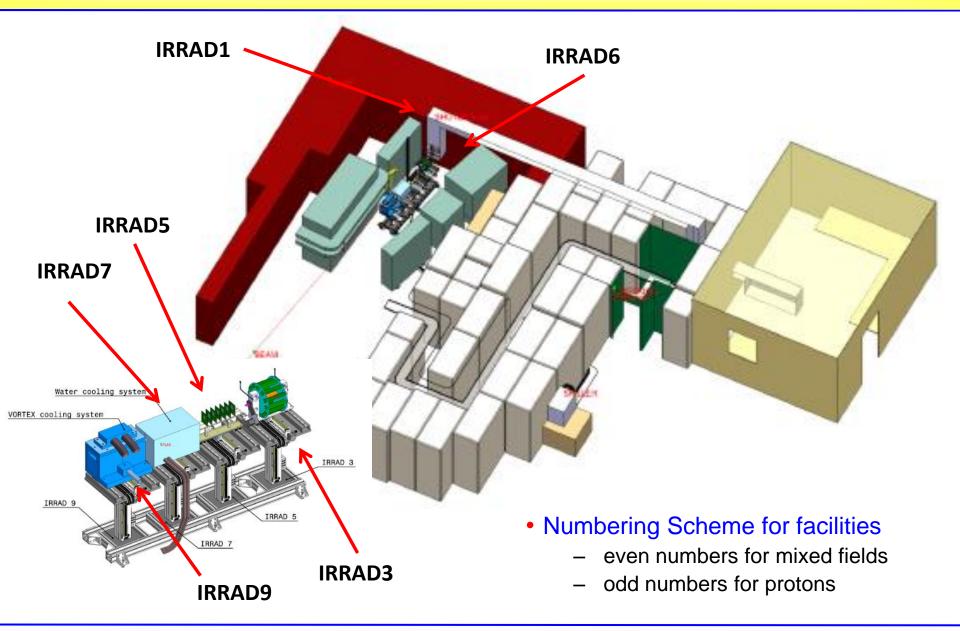
CERN ACCELERATORS & IRRADIATION FACILITIES

CERN PS East Hall - Irradiation Facilities


- (IRRAD1, IRRAD3, IRRAD5)
- Low intensity radiation field of backscattered particles (SEU and Dosimeter testing) (IRRAD6)

Neutron (mixed field) irradiations

 Mixed field produced in cavity after carbon (50cm) iron (30cm) lead (5cm) 'target' (IRRAD2)



Proton Irradiations: Shuttle and IRRAD Tables

AIDA IRRAD FACILITIES – Numbering Scheme

PS - Proton irradiation facility

Beam specifications:

Primary PS proton beam

• Beam line: PS-T7

Beam energy: 24 GeV/c

Slow extraction

• Spills of protons (~ 2×10¹¹ p, 400 ms)

1x1 to 5 x 5 cm² • Beam spot: (typical 2x2cm²)

Proton flux

• $\sim 1 - 9 \times 10^{13} \text{ p cm}^{-2} \text{ h}^{-1}$

• $\sim 5 \times 10^{14} \text{ p cm}^{-2} \text{ day}^{-1}$

• $\sim 1 \times 10^{17} \text{ p cm}^{-2} 150 \text{days}^{-1}$

Irradiation tables and boxes (IRRAD3 & 5)

- Irradiation on x-y-z movable tables (max 100 Kg)
- Irradiation inside cooled (-20°C) and atmosphere controlled boxes (max volume:20 x 20 x 50 cm³)
- Scanning over surfaces up to 20 x 20 cm²

Shuttle system (IRRAD1)

Standard volume: 5 x 5 x 15 cm³

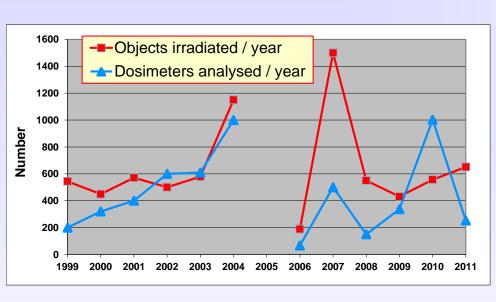
Max volume (on request): 10 x 10 x 20 cm³

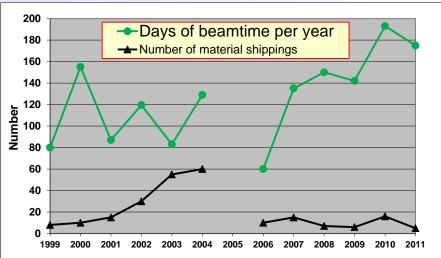
Electrical connections

Neutron irradiation facility (IRRAD2)

- Irradiations performed with a shuttle system very similar to proton shuttle
 - Conduit: 40x40 cm², 15 m long
 - Standard volume for irradiations 20 x 20 x 20 cm³ (on demand up to ~ 30 x 30 x 35 cm³)

- Neutron flux
 - $1-3 \times 10^7$ n cm⁻² s⁻¹ (E > 1 MeV) at 50 cm from beam axis (6 days for 10^{13} n cm⁻²)
 - Tabulated fluxes for different energy cuts and irradiation positions available for users

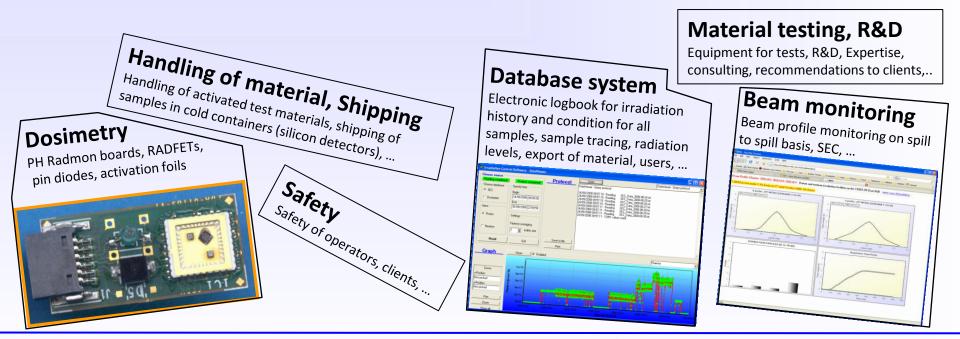

Users & Statistics


Main users:

- LHC Experiments (in particular innermost detector components silicon tracking detectors)
- increasing requests linked to detector developments for LHC-upgrades (up to 2x10¹⁶ p/cm²)

since 1999:

More than 7500 objects have been irradiated in 1500 days of beam time!


Irradiations in 2011

- Main users: ATLAS, CMS, LHCb, RD50, RD39, LHC
- 651 objects irradiated, 253 dosimeters measured, 175 days of beam time

AIDA Irradiation facility and its services

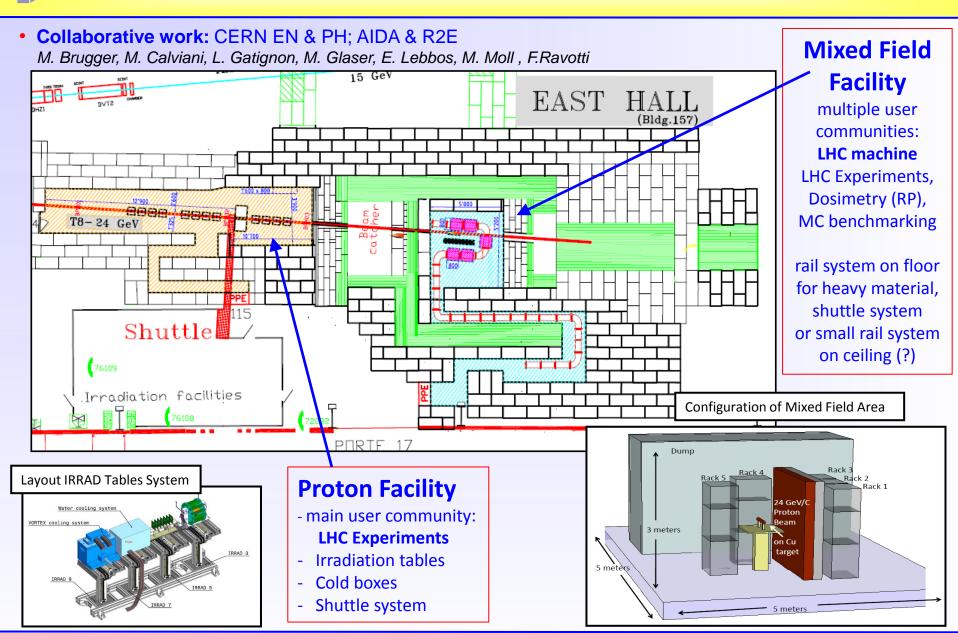
- Team (CERN-PH-DT): http://www.cern.ch/irradiation/
 - M.Glaser, M.Moll, F.Ravotti (started in March 2012 funded by AIDA project)
 - Technical support from PH-DT
- Service:
 - A <u>radiation facility</u> is a complex infrastructure and service organization going far beyond 'providing just the beam'!
 - Operation of facility: Irradiations, support in producing sample holders, beam monitoring, dosimetry, safety, providing basic equipment (e.g. CV/IV for sensors), shipping of material, sample tracing,.....etc.
 - To be considered when planning a new facility and its operation!

Drawbacks and Shortcomings of the present EAST Hall facilities with respect to future needs:

Drawbacks and Shortcomings of the present EAST Hall facilities:

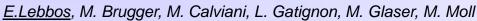
- Proton Irradiation facility
 - Located in primary zone (limited access: stop all beam lines for access, wait for radioactive decay)
 - Limited space (Personnel exposed to radiation, difficult to scan beam over big objects, backscattered particles)
 - Safety standards to be improved!
- Mixed field irradiations (behind DIRAC)
 - No irradiation position lateral to target (missing an important 'particle mix' component)
 - **Limited intensity** (with present flux not interesting for inner detector community)
 - Too little space and limited accessibility (access only via shuttle system!)
 - **Parasitic to DIRAC**
- Proton & Mixed field facility located in different beam lines
 - **Facilities competing for beam**

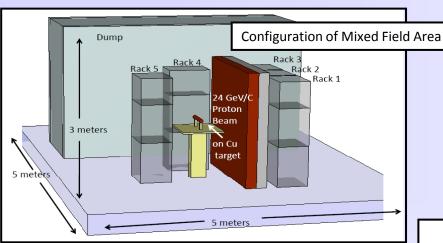
Task 8.3. – Upgrade of PS proton and mixed-field irradiation facilities at CERN

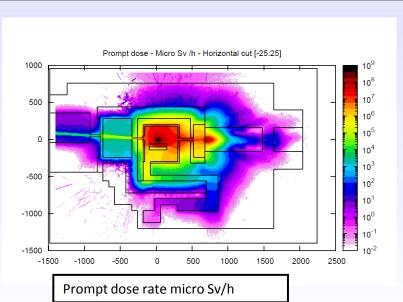

- Task leader: Michael Moll (CERN)
- Objectives:
 - Improvement of existing irradiation facilities at CERN PS
 - Elaboration and evaluation of upgrade scenarios
 - Design and test of common infrastructure for the facility
- Sub-tasks and participants
 - 8.3.1. Improvement of existing irradiation facilities and evaluation of upgrade scenarios
 - 8.3.2. Common infrastructure for the facilities
 CERN, UNILIV, USFD (Irradiation tables and boxes)
 VU (Radiation monitoring system)
- 2 milestones and 2 deliverables:

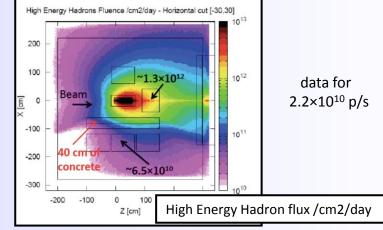
MS31	Installation of new equipment	CERN(1)	m26	Movable irradiation tables operational (Task 8.3.2) CERN, UK
			March 2013	
MS35	Installation of infrastructure	(34)	m37	Cold boxes and Fluence monitoring system operational
			Feb. 2014	(Task 8.3.2) CERN, UK, VU

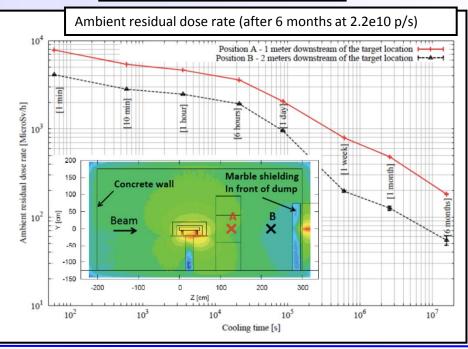
D	8.4	Upgrade scenarios for irradiation lines: Design study on new or upgraded irradiation facilities at CERN based on slow extracted proton beams. Containing a proton and – if feasible – a mixed field irradiation facility.	[month 37] Feb. 2014	Task 8.3.1 CERN
D	8.10	Commissioning of new facility equipment: Report on commissioning of shuttle systems, movable	[month 48]	Task 83.2
		irradiation tables with cold boxes and a fluence monitoring system based on a microwave	January 2015	CERN, UK, VU
		absorption technique in silicon.		


AIDA Layout studies using the DIRAC experimental area



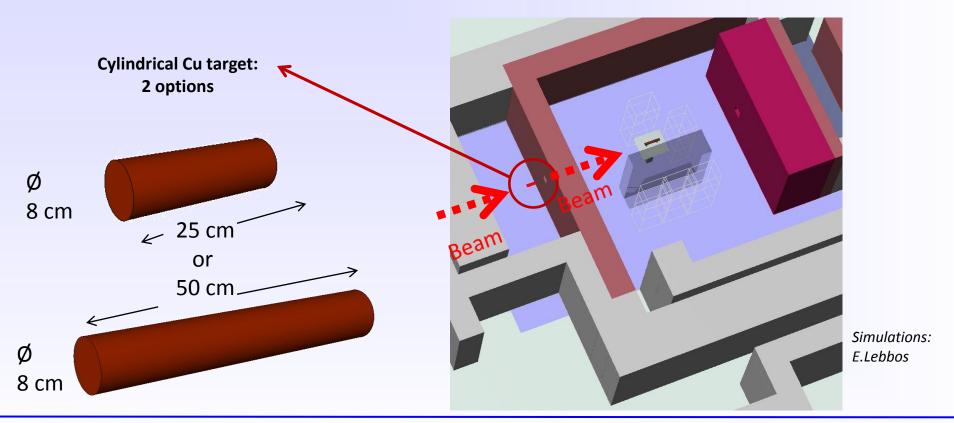



Fluka calculations (Mixed Field Area)

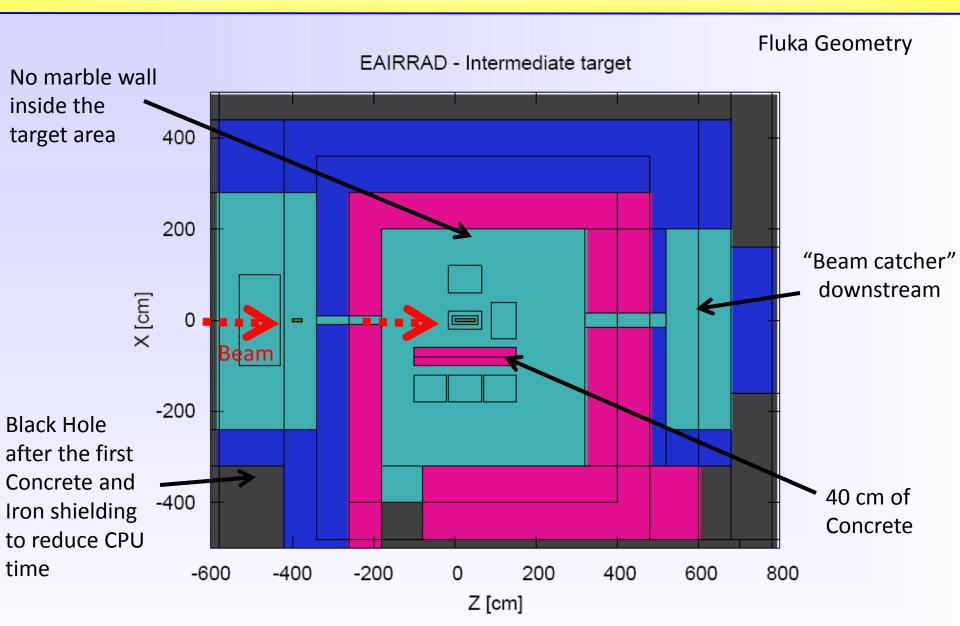

Documented in AIDA-NOTE-2012-001 "East Area Irradiation Test Facility; Preliminary FLUKA calculations"

EAST AREA renovation plans

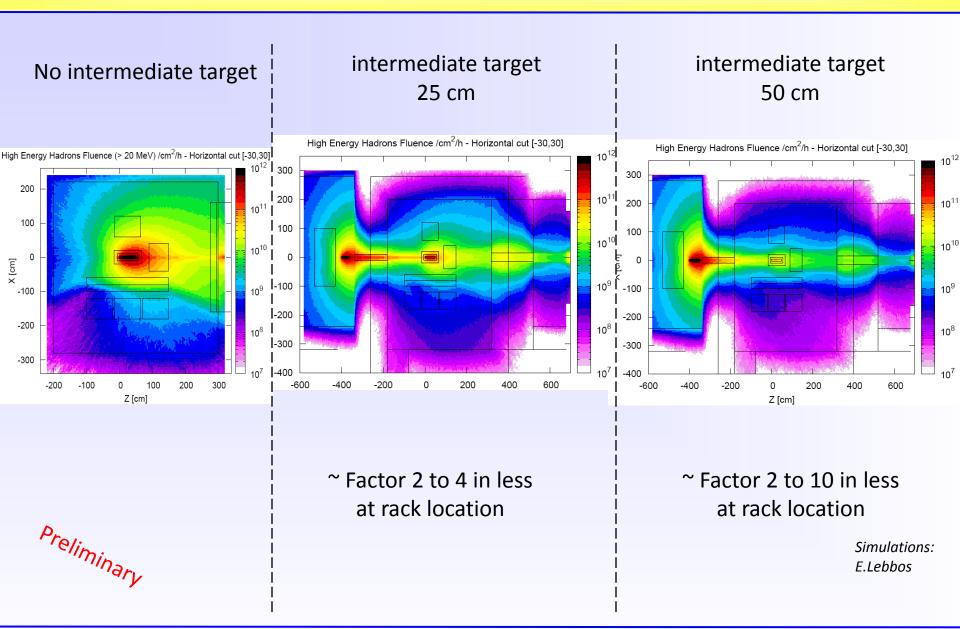
- Workshop at CERN "EAST AREA DAY" on 1.Feb 2012 (INDICO)
 - Organized by CERN EN Department (Lau Gatignon)
 - Presentations and Discussions on plans for renovation of the CERN EAST AREA
 - Outlook on future Experiments and Facilities in the EAST AREA
 - Consolidation of Infrastructure, Equipment and Building
 - Cost estimates, planning of work and coordination issues
- Irradiation Facility is part of these considerations
 - Document "FUTURE EXPLOITATION OF THE EAST AREA" existing as DRAFT
 - Preliminary cost estimate for irradiation facilities (as part of overall renovation project):


Sub-project	MCHF	FTE
East Area layout change	1.5	3
East Area consolidation	12.4	15
IRRADiation facility upgrade	2.1	2.5
Total	16.0	20.5

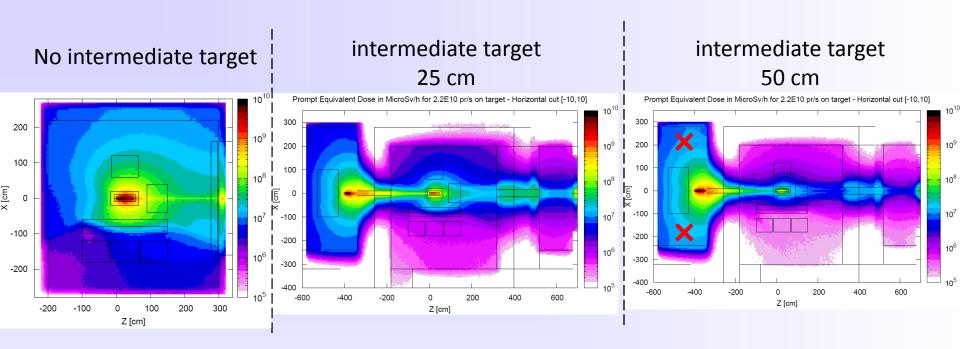
- Still some issues to be looked at in more detail (potential cost increase)
 - Ventilation, target and sample positioning systems, etc....


Ongoing work: Flux reduction for mixed field

- Problem:
 - Proton facility requires most of the time a full intensity beam (fast irradiations & reaching high fluences up to 10¹⁶ cm⁻²)
 - Mixed field facility will require for some experiments a low particle flux
- Searching for solutions (ongoing work)
 - Placement of intermediate target (?), 'TAX'-like absorber (?) or modify target (?)



FLUKA geometry configuration

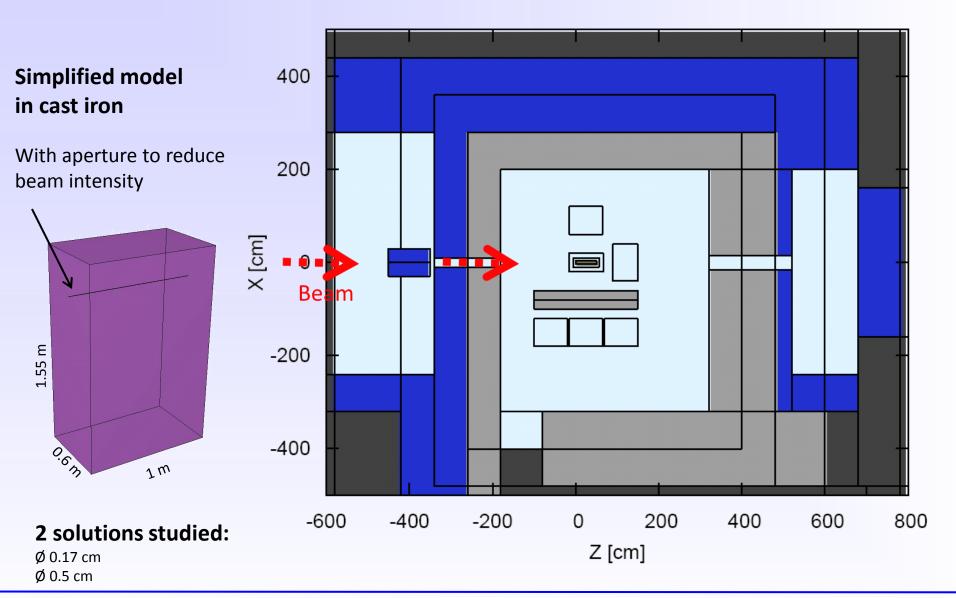


High Energy Hadrons fluence (>20 MeV) per hour

Prompt equivalent dose (µSv/h)

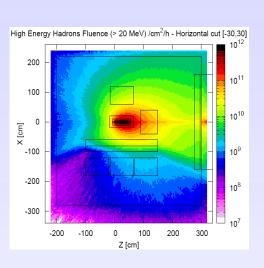
As calculated for the case without intermediate target:

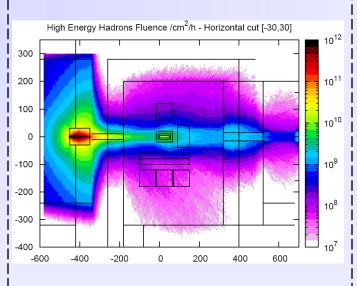
3.2 m concrete + 1.6 m iron => required to reduce prompt equivalent dose down to $0.7 \mu Sv/h$


But:

- ~ 1m of iron can be put laterally on both sides as indicated on the plot by "×"
- a bigger "self shielded" Cu/Fe target can be used

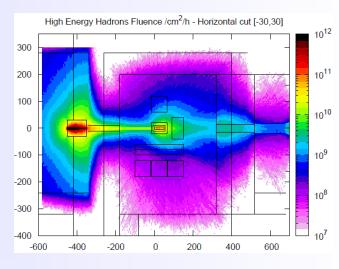
Preliminary


Another solution: a TAX-like intermediate target



AIDA High Energy Hadrons fluence (>20 MeV) per hour

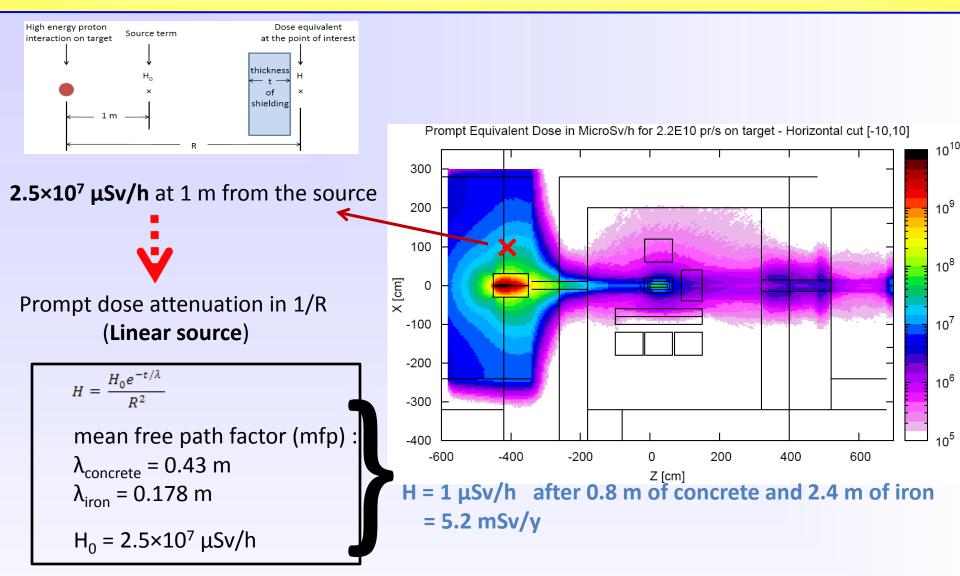
No intermediate target



intermediate TAX Ø 0.17 cm

~ Factor 20 to 100 in less at rack location

intermediate TAX Ø 0.5 cm

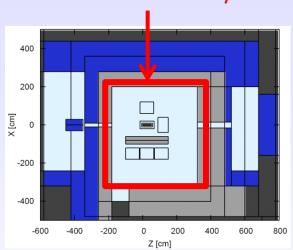


~ Factor 10 in less at rack location

Preliminary

Prompt equivalent dose (µSv/h)

[Ref] H. Sullivan, A Guide to Radiation and Radioactivity Levels Near High Energy Particle Accelerators, Nuclear Technology Publishing, ISBN 1870965183 (hardback), 1992.


AIDA Air activation (worst case scenario)

Assuming:

the following parameters:

Loss Rate Ejection	2.20E+10	pps
Volume target area	5.29E+07	cm3
Leak Rate	0	m3/h
Irradiation time	1.58E+07	s (6 months)

and this area only:

Without intermediate target (i.e. proton beam directly on the production target)

Isotopes	Yield	t 1/2	λ [s ⁻¹]	λ' [s-1]	Activity	CA value	Ratio	einh	Dose inh.
	Ejection				Bq/m3	Bq/m3	Act./CA	Sv/Bq	μSv/h
H-3	3.86E-03	12.35 y	1.78E-09	1.78E-09	4.45E+04	200000	0.22	4.1E-11	2.19
Be-7	8.20E-04	53.3 d	1.51E-07	1.51E-07	3.09E+05	100000	3.09	4.6E-11	17.08
Be-10	9.61E-04	1.6e+06 y	1.37E-14	1.37E-14	8.67E-02	90	0.00	1.9E-08	0.00
C-11	1.44E-03	20.38 m	5.67E-04	5.67E-04	5.99E+05	70000	8.56	3.2E-12	2.30
C-14	8.28E-01	5730 y	3.84E-12	3.84E-12	2.09E+04	10000	2.09	5.8E-10	14.52
N-13	2.47E-03	9.965 m	1.16E-03	1.16E-03	1.03E+06	70000	14.67	3.2E-12	3.94
0-14	1.22E-04	71 s	9.76E-03	9.76E-03	5.07E+04	70000	0.72	3.2E-12	0.19
0-15	1.72E-03	122.2 s	5.67E-03	5.67E-03	7.15E+05	70000	10.22	3.2E-12	2.75
0-19	7.05E-08	27.1 s	2.56E-02	2.56E-02	2.93E+01				
F-18	1.67E-06	109.8 m	1.05E-04	1.05E-04	6.95E+02	70000	0.01		
Ne-23	1.83E-07	28 s	2.48E-02	2.48E-02	7.61E+01				
Ne-24	3.76E-08	3.38 m	3.42E-03	3.42E-03	1.56E+01				
Na-22	6.29E-07	2.602 y	8.44E-09	8.44E-09	3.27E+01	4000	0.01	2E-09	0.08
Na-24	9.70E-07	15 h	1.28E-05	1.28E-05	4.03E+02	30000	0.01	5.3E-10	0.26
Na-25	3.42E-07	60 s	1.16E-02	1.16E-02	1.42E+02				
Mg-27	4.98E-07	9.5 m	1.22E-03	1.22E-03	2.07E+02				
Mg-28	2.09E-07	20.91 h	9.21E-06	9.21E-06	8.69E+01	6000	0.01	1.7E-09	0.18
Al-26	9.37E-07	7.16e+05 y	3.07E-14	3.07E-14	1.89E-04	400	0.00	1.4E-08	0.00
Al-28	2.75E-06	2.24 m	5.16E-03	5.16E-03	1.14E+03	6000	0.19	1.7E-09	2.33
Al-29	1.10E-06	6.6 m	1.75E-03	1.75E-03	4.57E+02				
Si-31	1.82E-06	157.3 m	7.34E-05	7.34E-05	7.57E+02	100000	0.01	1.1E-10	0.10
Si-32	1.07E-06	450 y	4.88E-11	4.88E-11	3.43E-01	30	0.01	5.5E-08	0.02
P-30	8.60E-07	2.499 m	4.62E-03	4.62E-03	3.58E+02				0.00
P-32	1.42E-05	14.29 d	5.61E-07	5.61E-07	5.90E+03	2000	2.95	2.9E-09	20.55
P-33	1.11E-05	25.4 d	3.16E-07	3.16E-07	4.58E+03	10000	0.46	1.3E-09	7.15
P-35	1.25E-06	47.4 s	1.46E-02	1.46E-02	5.20E+02				
S-35	1.50E-05	87.44 d	9.17E-08	9.17E-08	4.77E+03	10000	0.48	1.1E-09	6.30
S-37	6.36E-06	5.06 m	2.28E-03	2.28E-03	2.64E+03				
S-38	2.73E-06	2.87 h	6.71E-05	6.71E-05	1.14E+03				
Cl-34	5.11E-07	32 m	3.61E-04	3.61E-04	2.13E+02				
Cl-36	3.87E-05	3.01e+05 y	7.30E-14	7.30E-14	1.86E-02	1000	0.00	5.1E-09	0.00
Cl-38	2.86E-05	37.21 m	3.10E-04	3.10E-04	1.19E+04	40000	0.30	7.3E-11	1.04
Cl-39	4.91E-05	55.6 m	2.08E-04	2.08E-04	2.04E+04	200000	0.10	7.6E-11	1.86
Cl-40	8.33E-06	1.4 m	8.25E-03	8.25E-03	3.46E+03				
Ar-37	7.41E-05	35.02 d	2.29E-07	2.29E-07	3.00E+04	1E+11	0.00		
Ar-39	2.23E-04	269 y	8.17E-11	8.17E-11	1.20E+02	7000000	0.00		
Ar-41	1.74E-03	1.827 h	1.05E-04	1.05E-04	7.24E+05	50000	14.47		
K-38	4.11E-07	7.636 m	1.51E-03	1.51E-03	1.71E+02				
K-40	1.75E-06	1.28e+09 y	1.72E-17	1.72E-17	1.97E-07	3000	0.00	3E-09	0.00
Sum					3.58E+06		58.59		82.86

Conclusion: air activation is not an issue

Summary

Present facilities

- Proton irradiation facilities
 - Very heavily used; has reached its limits in terms of number of irradiations / year
- Mixed field irradiation facility
 - Only sporadically used; several limitations (low particle flux, limited access), no lateral field, parasitic)

Combined proton & mixed-field facility

- Efficient use of proton beam (used for both: proton and mixed-field irradiations)
- Fluka simulations demonstrate that the mixed field particle composure and flux arising from 24 GeV/c protons fulfills requirements for anticipated radiation tests
- First layout including optimization study in terms of area shielding at required highest proton flux presented and shown to be a feasible solution (published in AIDA NOTE 2012-001);
- Study on beam attenuation between proton and mixed field facility under way (first results shown)
- Air activation studies under way to understand ventilation issues (first results shown)

Next steps

- DIRAC end of data taking and dismantling to be confirmed, funded and executed
- Preliminary cost estimate to be detailed and verified by more precise design/implementation study
- Searching for implementation options in consensus with EAST AREA (staged) renovation/consolidation plans
- Integration of facilities projects into medium term planning (& funding) by CERN management required
- <u>Urgent</u>: Taking into account R&D and prototyping for the LHC Phase II upgrades and the R2E (Radiation to Electronics) needs an implementation starting in LS1 (end of 2012!) should be studied.