

Pixelated readout at Nikhef

1st AIDA Annual Meeting 28-30 March 2012 Martin van Beuzekom (Nigel Hessey, Jan Timmermans, Els Koffeman Bart Verlaat, Bas van der Heijden)

- Timepix chip
- Relaxd for Timepix
- Timepix3 chip
- Timepix3 readout with SPIDR
- Few words on CO₂ cooling

Timepix

Timepix existing chip in 0.25 μm technology

- General purpose chip developed by Medipix collaboration in 2006
- Matrix of 256x256 pixels of 55x55 um²
- Either Time-of-Arrival or Time-Over-Threshold (charge) measurement
 - Or 'counting' for imaging
- Frame based readout: readout the whole matrix, no zero suppression
 - Simple readout, but slow (~120 Hz using 1 serial link)
 - Higher speeds possible with parallel readout
- Chip size 14x14 mm, 3 side buttable
- Moderate radiation hardness

Timepix is used in many (non HEP) applications

Ingrid / Gridpix

- Integrated grid on top of Timepix
- Grid provides gas gain
- Thanks to Bonn University for their efforts to produce high quality devices
- Z-coordinate from drift time measurement
- Timepix: 10 ns time resolution
- Drift length depends on application
- from mm to meter

Readout with Relaxd

- Readout of large area Xray Detectors
- Originally designed for imaging (MPX2)
- T-shaped module
 - Fits behind quad chip module
 - Small board with FPGA and gigabit Ethernet interface
 - Firmware adapted to readout Timepix chips
 - Matching DAQ software: RelaxDAQ
 - Windows & Linux
- Works also with Pixelman SW

Relaxd

- Readout of 4 Timepix (or medipix2) chips via Gigabit Ethernet
- Up to 120 frames/ second (Timepix limit)
- No zero-suppression -> 50% occupancy of 1 Gbit/s Ethernet
- Our work horse for Timepix readout

Martin van Beuzekom

Renext: relaxd for gaseous detectors

- Quad timepix carrier board for gaseous detectors
- Provides gas enclosure
- Relaxd readout board as mezzanine

GridPix beamtests

- GridPix as tracking detector
- Used for telescope planes
- And as Device Under Test
- Relaxd readout

But not only used for Gaseous detectors ...

- "LHCb" Timepix telescope
- CERN chip carriers, 4 single chips into 1 Relaxd readout via breakout cable
- One of the AIDA telescope arms

Large Prototype TPC

Building a LPTPC tile with Timepix is under consideration

Scope of project to be defined

- One big module or multiple smaller ones?
- Relaxd readout on backside?
- Dedicated PCB for 8? / 16? or more chips
- Current relaxd can readout 4 chips
 - limited resources in FPGA
- Migrate to larger FPGA?

Limitations of Timepix

Z-resolution limited due to 10 ns time resolution

- Factor 5 more required for thin tracking devices
- Development of high resolution TDC: 1.7 ns bin width
- Prototype chips Gossipo3 and G4 (G4 with University of Bonn)
- Gossipo will not be developed to full scale chip: TDC integrated in timepix3

Maximum frame rate of ~120 Hz

- Full frame readout is OK for imaging, but too slow for tracking detectors
- -> zero suppressed readout
- new development: Timepix3

Next generation: Timepix3

- TPX3 is a general purpose chip
 - Some compromises coming from the need to accommodate many different applications, the technology choice, and the schedule.
- Developed and paid by the Medipix3 collaboration
- Chip designed by CERN with contributions from Nikhef and Bonn university
- Main changes w.r.t. Timepix1
 - Fast front-end -> Timewalk < 25 ns</p>
 - Simultaneous ToA and ToT measurements
 - TDC resolution 1.7 ns
 - Data driven readout: Each hit is time-stamped, labeled and sent off chip immediately

• Timepix3 is a precursor for VELOpix (LHCb), ClicPix, etc.

More Timepix3 info

- Designed in 130 nm IBM technology
- Radiation hard, TID > 500 MRad (SiO₂)
- Hit-rate per chip, up to 40 Mhits/s
- 4 serial output links @ 640 Mbit/s
 - Clock-data encoded signals (8B/10B) -> standard in FPGAs
- Uses CERN custom designed HD digital library
 - Low power, smaller size: hence more functionality

Status:

- Design is well advanced
- Chip submission expected late 2012
- A readout for TPX3 being designed by Nikhef: SPIDR

SPIDR development @ Nikhef

- Speedy Plxel Detector Readout
- Readout for Medipix3 and (later) Timepix3
- Initially 1 Gbit/s Ethernet, then migrate to 10 GBE
- Develop firmware on FPGA development boards
 - At a later stage design a compact readout module like Relaxd

Spider block diagram

Martin van Beuzekom

AIDA WP9.2, March 28, 2012

15

Readout summary

 Nikhef uses the relaxd readout system for a Timepix based gaseous detectors

- non zero suppressed data to gigabit Ethernet
- up to 120 frames / second
- existing system, number of users growing
- Next generation pixel chip: Timepix3
 - Design by CERN, Bonn, Nikhef
 - 1.7 ns TDC for improved z-resolution
 - up to 40 Mhits/s, zero-suppressed readout
- Readout/DAQ for TPX3 under development: SPIDR
 - data to (10) Gigabit Ethernet

And something completely different

- CO₂ cooling for WP9.3
- TRACI: Transportable Refrigeration Apparatus for Co₂ Investigation
- Several system are being built (CERN/Nikhef)
- Tests / characterization ongoing

VELO upgrade mini workshop, 9-10 Nov. 2011

Traci-2 expectations Chiller=1.5x capacity, Insulation 40% better

VELO upgrade mini workshop, 9-10 Nov. 2011