PCMAG Solenoid Upgrade

AIDA 1st Annual Meeting, Mar. 28. 2012
R. Diener, DESY

Overview

Introduction

Test Beam Setup
R&D Goals, Large TPC Prototype
PCMAG

AIDA PCMAG Modification

Modification Plan

Modification Details

Test Beam Area

Time Schedule

Test Beam Setup

- Set up in DESY II test beam area T24/1 (e+/e- from 1 to 6 GeV/c):
 - Large field cage with modular end plate
 - PCMAG magnet mounted on movable
 - Lifting stage (3 axis)
 - HV, gas and slow control systems
 - Cosmic and beam trigger
 - Laser calibration system, planned: external silicon layers

Large TPC Prototype

- Goal: study in practice the design and fabrication of all components of a MPGD TPC in larger scale
- Large TPC Prototype:
 - Light weight; made of composite materials
 - Ø 72cm, L= 61cm
 - Modular end plate
 - Up to 7 read-out modules
 - Size/shape similar as forseen in the final detector

Test Beam Usage

• **2008**:

 Nov-Dec Micromegas module w/ resistive anode (T2K electronics)

2009:

- Feb-Apr 3 Asian GEM Modules w/o Gating GEM (3,000ch ALTRO electronics)
- Apr TDC electronics with an Asian GEM Module
- Apr-May Maintenance of PCMAG
- May-Jun Micromegas w/ two different resistive anodes (New T2K electronics)
 Setup and test of laser–cathode calibration
- Jun GEM+Timepix (Bonn)
- Jun Installation of PCMAG moving stage and SiTR support
- Jul TDC electronics with an Asian GEM module ALTRO electronics study w/ Asian GEM
- Jul-Aug Full installation of PCMAG moving stage
- Aug Micromegas w/o resistive anode with lasercathode calibration
- Sep Bonn GEM module (small area GEM with ALTRO electronics)
- Nov Micromegas with SiTR

2010:

- Mar Micromegas using PCMAG movable table.
- Mar+Sep

3 Asian GEM modules w/ gating GEM or a field shaper using the PCMAG movable table (7616ch ALTRO electronic)

 Dec Octopuce (8 Ingrids) test on LP with 1T (Saclay/Nikhef)

2011:

- Apr First test of DESY GridGEM module (B=0T)
- May New AFTER electronics for Micromegas Installation of new cosmic trigger logic
- Jun/Jul DESY GridGEM module with ALTRO read-out
- Jul PCMAG shipped to Japan

2012:

- Mar Return of PCMAG
- Apr-Jun Installation of upgraded PCMAG
- Summer / Autumn (tentative):
 - Test with 7 Micormegas modules with integrated AFTER electronics, Test of Japanese GEM modules, Test of DESY GridGEM module

PCMAG

- PCMAG (designed for airborne experiments)
 - Persistent Current, superconducting MAGnet
 - Thin coil and wall (0.2X₀), no return yoke
 - Liquid Helium reservoir
 - Moved to DESY in Dec 2006
 - Tested and mapped in 2006-2007 (cooperation of DESY, KEK and CERN) Accuracy of 10⁻⁴
- Dimensions and data:
 - Coil: Ø 1.0 m, ↔ 1.3 m, weight: 460 kg
 - Central magnetic field: up to 1.2T
 - Liquid He capacity: 240L (max. 10 days)
 - Operational current: ~430A (1T)

Overview

Introduction

Test Beam Setup
R&D Goals, Large TPC Prototype
PCMAG

AIDA PCMAG Upgrade

Modification Outline

Modification Details

Test Beam Area

Time Schedule

PCMAG Upgrade Goal

- Up to now: filling manually with liquid Helium
 - Expert work: many steps that have to be followed carefully
 - Longer running times (many fillings): probability of pipe blocking due to small amounts of air in the system

PCMAG Upgrade Goal

- Upgrade in AIDA (with contrib. from KEK & DESY):
 PCMAG without liquid Helium using cryo coolers (closed circuit system)
- Compact GM cryo-coolers now available (with efficient regenerator) and technically rather easy modification from LHe cooling to cryo-coolers
- Advantages:
 - No liquid Helium filling:
 - No pre-cooling
 - No recovery of Helium gas
 - Save liquid Helium (1000l for initial cooling and ~250l/week)
 - Safe, easy and efficient operation (by R&D groups)
 - No handling with cold gases
 - Simple switch-on procedure
 - Standard way of operation (no persistent current mode)
 - → increased safety in case of emergency-off
 - Long-period, "unattended" operation possible
 - Portability to bring it to any beam line in the world

PCMAG Upgrade Details

- PCMAG become longer by about 10 cm (but still inside NASA frame)
- Two cryo coolers (Gifford McMahon cycle) will be added to vacuum vessel:
 - One two-stage cooler for the coil and the radiation shield (4 resp. 50 K)
 - One one-stage cooler for the current leads (50 K)

- Power: 6.5-7.2 W (380 V, 13 A)
- Cooldown will take about 10 days

Thermal Loads / Cryo-Coolers

Thermal loads	1st stage	2nd stage (4K)
Radiation	30W	0.5W
Thermal conduction	1W	0.02W
Current leads	42W	0.1W
Sum ∑	73W	0.62W

Two-stage 4k cryo-cooler

To cool coil and the 1st -radiation shield

Sumitomo (SHI) Cryogenics 4K cryo-cooler RDK-408D2 with a compressor F-50: 1st Stage Capacity: 34W @40K @5 0Hz 2nd Stage Capacity 1.0W @4.2K @ 50Hz

One stage 10K cryocooler
To cool HTc-superconductive current leads

Sumitomo (SHI) Cryogenics 10K cryo-cooler RDK-400B with a compressor F-50 1st Stage Capacity: 54W@40K @ 50Hz

http://www.shicryogenics.com/

PCMAG Modification I

PCMAG Modification II

Test Beam Area

- Power:
 - improved cables to magnet up to 448A, 1kV
 - new power lines for compressors: 35A each
- Instead of water chiller: cooling water
 - 7 °C
 - from central DESY lines

Time Schedule I

- Shipping
 - Left DESY 26. July '11
 - Arrived at KEK 10. August
- During absence: work on the movable stage
 - Improved cabling including end switches, stop buttons and other safety devices
 - Position measurement system
 - Axis covers, improved holding structure, etc.

Test of Modified PCMAG

Test of Modified PCMAG

- March 10, 10:16h start of cooling
- March 19, 12:00h coil at 5K
 - 13:30h excitation in steps up to nominal current at 1T:
 10A → 100A → 200A → 300A → 400A → 432A
 - 17:50h 432A (by the shunt resistor) / 0.03V across the coil.
 Power Supply output: 445.21A at 2.195V
 Power supply settings: 445A and 2.5V
 (some voltage drops in the power cables and breakers)
 - 18:50h excitation stable for 1h; no change of temperatures, voltage or current
 - 18:55h breaker to ramp down magnet
 → coil quenched during
 - switch off: temp. 50K,
 - max voltage 59.572V
 - → protection breaker triggered set to 1mV
 3mV over HTc current leads

- March 20, 00:40h coil cooled down again, test up to 200A, no damage observed
- March 21, 10:00h shipping out from Toshiba (coil still at 28K)

Time Schedule II

• Shipping:

- Left from Toshiba/Keihin (Yokohama) on the 21. March
- Arrival at Hamburg Airport: 24. March
- Installation:
 - April
 - Unpacking (second week) and installation of PCMAG in movable stage
 - Installation of additional power lines and cooling water lines
 - Prepare necessary items of the power supply and monitor system at KEK
 - May/June
 - Installation work at stage and alignment
 - Installation of compressors (cooling water, power & pressure lines)
 - Install magnet power cables, power & monitoring racks
 - Cooldown (start: end of May) → test runs:
 - Settings of dump resistor and quench protection limits
 - Study vibrations
- Finish system installation and test run till mid / end of June

Thanks to our Japanese colleagues for keeping us up-to-date in the last months and for supplying pictures and information for this presentation